{"pages":{"search":{"query":"Y.Y.F.","originalQuery":"Y.Y.F.","serpid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","parentReqid":"","serpItems":[{"id":"5873510952185549953-0-0","type":"videoSnippet","props":{"videoId":"5873510952185549953"},"curPage":0},{"id":"2142537052207044211-0-1","type":"videoSnippet","props":{"videoId":"2142537052207044211"},"curPage":0},{"id":"16424176533042157212-0-2","type":"videoSnippet","props":{"videoId":"16424176533042157212"},"curPage":0},{"id":"12137369981386595699-0-3","type":"videoSnippet","props":{"videoId":"12137369981386595699"},"curPage":0},{"id":"-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dFkuWS5GLgo=","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","ui":"desktop","yuid":"6000283261769892940"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"5337693177645279179-0-5","type":"videoSnippet","props":{"videoId":"5337693177645279179"},"curPage":0},{"id":"7583418887352569599-0-6","type":"videoSnippet","props":{"videoId":"7583418887352569599"},"curPage":0},{"id":"10428101170297185087-0-7","type":"videoSnippet","props":{"videoId":"10428101170297185087"},"curPage":0},{"id":"344564103774321108-0-8","type":"videoSnippet","props":{"videoId":"344564103774321108"},"curPage":0},{"id":"5814902216276727843-0-9","type":"videoSnippet","props":{"videoId":"5814902216276727843"},"curPage":0},{"id":"9724142725960996841-0-10","type":"videoSnippet","props":{"videoId":"9724142725960996841"},"curPage":0},{"id":"-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dFkuWS5GLgo=","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","ui":"desktop","yuid":"6000283261769892940"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"4520370567750019805-0-12","type":"videoSnippet","props":{"videoId":"4520370567750019805"},"curPage":0},{"id":"18156309820750021076-0-13","type":"videoSnippet","props":{"videoId":"18156309820750021076"},"curPage":0},{"id":"15906905152693315987-0-14","type":"videoSnippet","props":{"videoId":"15906905152693315987"},"curPage":0},{"id":"16787772151588740985-0-15","type":"videoSnippet","props":{"videoId":"16787772151588740985"},"curPage":0},{"id":"6278261978726470418-0-16","type":"videoSnippet","props":{"videoId":"6278261978726470418"},"curPage":0},{"id":"14382011641096680356-0-17","type":"videoSnippet","props":{"videoId":"14382011641096680356"},"curPage":0},{"id":"5097330284460336749-0-18","type":"videoSnippet","props":{"videoId":"5097330284460336749"},"curPage":0},{"id":"10984554351240943996-0-19","type":"videoSnippet","props":{"videoId":"10984554351240943996"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Your region Columbus","needRetpath":true}]},{"type":"searchengines","links":[{"label":"Google","url":"//google.com/search?tbm=vid&q=Y.Y.F.","logNode":{"name":"link","attrs":{"type":"google"}},"target":"_blank"},{"label":"Bing","url":"//bing.com/videos?scope=video&q=Y.Y.F.","logNode":{"name":"link","attrs":{"type":"bing"}},"target":"_blank"}]},{"type":"help","links":[{"label":"Contact us","url":"https://yandex.com/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Help","url":"https://yandex.com/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Tune","url":"https://yandex.com/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"About","url":"//yandex.com/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"License","url":"//yandex.com/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Privacy Policy","url":"//yandex.com/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dFkuWS5GLgo=","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","ui":"desktop","yuid":"6000283261769892940"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Fxmlsearch.yandex.com%2Fvideo%2Fsearch%3Ftext%3DY.Y.F."},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"0659813910245101497267","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1472346,0,18;1470500,0,86;1457622,0,57;1471438,0,8;1186711,0,65;1473738,0,92;1476205,0,11;1472056,0,77;1460956,0,23;1460712,0,70;1460214,0,90;1472029,0,14;1468785,0,74;30275,0,11;1469893,0,75;260554,0,87;182561,0,29;66185,0,35;123843,0,60;1461712,0,87;1470249,0,71;1479355,0,71;1470224,0,95;1282205,0,26;1479385,0,58;1466295,0,85;1476063,0,35;1467160,0,7;1452015,0,58;1146115,0,97;1471919,0,73;1470513,0,50;120693,0,81;1404017,0,73;1471176,0,49;961010,0,20;1478803,0,61;1477432,0,49;1297912,0,77;1479363,0,57;124078,0,37;90498,0,85;151171,0,59;126308,0,15;126344,0,74;1281084,0,1;287509,0,85;1447467,0,67;1466397,0,38;1467128,0,56;1476846,0,46;1478788,0,4;912280,0,25"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Fxmlsearch.yandex.com%2Fvideo%2Fsearch%3Ftext%3DY.Y.F.","mordaUrl":"//yandex.com/","videoSearchUrl":"https://xmlsearch.yandex.com/video/search?text=Y.Y.F.","settingsUrl":"https://yandex.com/tune/search/","helpUrl":"https://yandex.com/support/video/","legalUrl":"//legal.yandex.com/termsofservice/","feedbackUrl":"https://yandex.com/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","backUrl":"//ya.ru","url":"https://xmlsearch.yandex.com/video/search?text=Y.Y.F.","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Y.Y.F.: 904 videos found on Yandex","description":"Результаты поиска по запросу \"Y.Y.F.\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"Y.Y.F. — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y21c88e787381e5f1094d4be4dcaba451","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1472346,1470500,1457622,1471438,1186711,1473738,1476205,1472056,1460956,1460712,1460214,1472029,1468785,30275,1469893,260554,182561,66185,123843,1461712,1470249,1479355,1470224,1282205,1479385,1466295,1476063,1467160,1452015,1146115,1471919,1470513,120693,1404017,1471176,961010,1478803,1477432,1297912,1479363,124078,90498,151171,126308,126344,1281084,287509,1447467,1466397,1467128,1476846,1478788,912280","queryText":"Y.Y.F.","reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"6000283261769892940","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1167408,1202006,1194718,1221235,1228280,1227266,1226860,1246754,1313283,1321224,1300570,1320679,1352408,1342688,1341968,1345362,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1472666,1478181,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"en","user_time":{"epoch":"1769892947","tz":"America/Louisville","to_iso":"2026-01-31T15:55:47-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1472346,1470500,1457622,1471438,1186711,1473738,1476205,1472056,1460956,1460712,1460214,1472029,1468785,30275,1469893,260554,182561,66185,123843,1461712,1470249,1479355,1470224,1282205,1479385,1466295,1476063,1467160,1452015,1146115,1471919,1470513,120693,1404017,1471176,961010,1478803,1477432,1297912,1479363,124078,90498,151171,126308,126344,1281084,287509,1447467,1466397,1467128,1476846,1478788,912280","queryText":"Y.Y.F.","reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"6000283261769892940","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"0659813910245101497267","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":154,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":false,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"6000283261769892940","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1759.0__78afb7e0ef66aeda09c521d3b89f7cdbe661a72a","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"xmlsearch.yandex.com/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","feedback":"296","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"5873510952185549953":{"videoId":"5873510952185549953","docid":"34-10-13-Z4049814F3C2E3FA6","description":"🤩 Hello everyone, I'm very excited to bring you a new channel (SyberMath Shorts) Enjoy...and thank you for your support!!! 🧡🥰🎉🥳🧡 / @sybermathshorts ⭐ Join this channel to get access to perks...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2950428/490d5fa7c80106a9ca544d06a09c04b8/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/DPyhMAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","isAdultDoc":false,"relatedParams":{"text":"A Differential Equation | y'=y/x","related_orig_text":"Y.Y.F.","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Y.Y.F.\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=D1PhqYvy-UU\",\"src\":\"serp\",\"rvb\":\"EqsDChM1ODczNTEwOTUyMTg1NTQ5OTUzChMyMTQyNTM3MDUyMjA3MDQ0MjExChQxNjQyNDE3NjUzMzA0MjE1NzIxMgoUMTIxMzczNjk5ODEzODY1OTU2OTkKEzUzMzc2OTMxNzc2NDUyNzkxNzkKEzc1ODM0MTg4ODczNTI1Njk1OTkKFDEwNDI4MTAxMTcwMjk3MTg1MDg3ChIzNDQ1NjQxMDM3NzQzMjExMDgKEzU4MTQ5MDIyMTYyNzY3Mjc4NDMKEzk3MjQxNDI3MjU5NjA5OTY4NDEKEzQ1MjAzNzA1Njc3NTAwMTk4MDUKFDE4MTU2MzA5ODIwNzUwMDIxMDc2ChQxNTkwNjkwNTE1MjY5MzMxNTk4NwoUMTY3ODc3NzIxNTE1ODg3NDA5ODUKEzYyNzgyNjE5Nzg3MjY0NzA0MTgKFDE0MzgyMDExNjQxMDk2NjgwMzU2ChM1MDk3MzMwMjg0NDYwMzM2NzQ5ChQxMDk4NDU1NDM1MTI0MDk0Mzk5NgoTMTYyODgxNTE0ODA2Nzg4MjIzMwoTMTk5MDc0ODc3NjM3MDUwNzg4ORoVChM1ODczNTEwOTUyMTg1NTQ5OTUzWhM1ODczNTEwOTUyMTg1NTQ5OTUzaocXEgEwGAAiRBowAAopaGh2YWtzZmR3eGdxY3F6aGhVQ1c0Y3pva3Y0MEpZUi13N3U2YVhaM2cSAgARKhDCDw8aDz8TuwSCBCQBgAQrKosBEAEaeIHtBPv3A_wA_AAMEPgK-wIV9AcG9gAAAPfzAfEDA_4A6QMHAAL_AADvF_7_BQAAAAr8A_72_gEAEgQC9AUAAAD-8_wM_QAAABv89QT-AQAA8fL49AIAAAAF-v72_wAAAPUQAQMBAAAA7g38BQAAAAAFBgH1_wAAACAALZzVxjs4E0AJSE5QAiqEAhAAGvABfw35Ad73tAHcEOAA7fLyAdMe-wAXR_kAzvf_AMwV2AAADuEA5icF_-A17_-aKf8BGwHGAP_m5wEy7wD_HtACAM4EBQAp-PEBNiYYACABBf7iATn-_eYCAAkC4QEIC9P-B9Qa_ifz6AAK67sICR0yA_TcPQIG6Qj_3rP9Aen39QIU8_f82xD5_xgQ__ri9i4H-OoKBfvo9vbtEt79DvQJBuvkCfUILNf-LuzuCC0aBgC21g3_EckHChUfIv7eJOb-8_ckAuEf__jzIRr1BQT0Bezs7AoHCNwLDv7-_PnyDgUiD-sDCAP-88sk8fz8HPH6IAAt9YoaOzgTQAlIYVACKs8HEAAawAesrbi-zzKLvFbraTzJd4S61TXkPPvxzbwU2pi9J095PQsRibufWzg-5xN-vdgKP7xoN4-9Jn7WPED8l7zLgDM-5tGIvZhiMzxxPVq-5xa_PYVMqLwqXXW9zQ_SPF8MxDse18C9SbOevNxtcryVels9Kp8XOv7BtjzKLn29SeeuO-CXH73cahk69RFYvRN8WL3t0KW9nyHcvL9sUb0uWaU9Y0JMvB8IWjyvx6k9KCYQu6zQFr3Xfqe9C_1dvHdLcrwv4tY8ztyoPTDHoTxT0O29HzJAvZHXnrz-BWe9wENsPTyZB7smQKg9kKgrPW_RrrxfjJI9ThE7vHHBvrxjtB6-NhZ7u39gWDzwf2w9ZqnAPeVlCTwY0gG-SYOrPZYmJbykA6s7xnkOPelHQ7yvZ349wUIcPEJ5HTyTuQO9FV4dvaPElbgxLUW9JGC2O_Swhjzs-gU92Znivaurp7xOjsw9HnohPT4u4LvbARK9KJYAvepEG7qouJ47QhlUPWGfZ7oU5408xrMavScUILwFI6U91gI7vknlmjpXezi9L4f9vSqgZjp0fso8aiRzPYXEqLtO8M09ZjPnvf9XADzhb2U9oYYvvTpqmrs0RjC90TCGvP-mgbzHOQC9uhq0vD95M7w2GqW9W8qePOsqD7xy7I-8iZNAPU2wLDvTzGk9Dt3svY-KOLp4H4w9IrFzPYByCLveHuQ9T8THPIhXIzmWLx49rtiPvfY_4brZEBK9Sc3ovFpCpTtBmhG9WTVjvTNIB7nurw4-nxKRvX7QlDn9lR-9LpNcPb5Yp7js0xu92TtIPNbC7Da50mE9Lt6UvXNP3ThcVAu9nBXxvdyedTmx6609At5dvO5CAjkdYJy8vDuSPYgxsLenR8m8mxPFvQMCszjyCfq7eBeOvR_VCrm3JKw8H7kVvdMaDTly9z69_ybvPN5GjLjctL48XEKZvJc8y7hDEsc8TRC1PLW7gzhB43i8fEftvWETqzlzGAY8TpY_Pdbckzd1RzW8HdNJPfssMrd0xA48-XRLPTIV4LjTzwg8ZjHRvT5LlzZT-AK96c6oPW_n8DigUM-9Fe-GPcLSAjjuHdo8HBm1vJ-UbLdQwky8L-mePFs8hrhPDjU9nCAgPcpSRzgvphk-eDvMPPzmG7nevII8tK8cvvyHZbgeKng7JQTrvSO_ZziRvwq9gx6VPYtDkTdhBnk98zoSvkvnqbjK9HA9IuErPvHLijjrXOy8qqSkPQGLxLjoVbO9FiTsPM24ITjeAR69GbGNO9UDPjggADgTQAlIbVABKnMQABpgEv0ALysjCAMiHPXczwL-4eoc3-re6v_U3gAyB-ztHBPVyur8_ybgCNuzAAAAMNsJDPkAK2AA5_hR-wjs1MLCLz9_3QghEQIn8MrpThkN6g4O5fpOAN0fsSsKELsuBP4oIAAtgFcwOzgTQAlIb1ACKq8GEAwaoAYAAHBBAABkwgAAdEIAACjCAACIQQAA4EAAAJZCAAAAAAAA0MEAAABAAACoQQAAwEAAADxCAAAswgAAwMEAAJBBAAAUQgAAYEEAAEDAAACAQQAAYEIAABDBAAAIwgAAIEEAAI7CAACwQQAAHMIAAIBBAAAsQgAAEEEAAODBAADAwQAAOMIAAOBBAACiwgAAsEEAAI5CAABUQgAAwEAAAEBCAACwwQAAQMEAALBCAABwwQAAoEEAAPDBAAB4QgAAmkIAADRCAABQQQAAgEAAAGDCAAC4wQAANMIAAABAAACaQgAAgMEAAARCAACgQQAAXEIAAMDBAAAMwgAAHMIAACzCAABYwgAA7sIAAMDBAACgQAAAUEEAAIA_AADAwAAAwMAAACTCAACYQgAAfMIAAGDBAAA4wgAAgEIAADjCAACIwQAAYMEAANJCAAAgwQAAUMEAAABAAAAgwQAAwEEAAAAAAABQQQAAAAAAABzCAAAQQgAA4EEAALDBAABUQgAAoMAAABjCAABgQQAAaEIAAMJCAACYwQAAQEEAAGDBAADoQQAAisIAAAjCAABgwQAAfEIAADBBAACKQgAAbEIAAEBBAADAwQAAUMEAAIDAAACoQQAA4EEAAFjCAAA0QgAAkEEAAODAAACMwgAAAMEAAABBAABIwgAAjsIAAKbCAAAcwgAAOMIAALBBAAAwwgAAwEEAAABBAAAoQgAArMIAAPBBAAAAwQAALMIAAMDBAACAwAAAdMIAAPhBAAC4QQAAiEEAAExCAAAkQgAAgD8AAGBBAACAQAAAcEEAACjCAABgQQAAAEEAACDCAACgQQAAqMEAAODBAADYwQAAwsIAADDBAACgwAAAwMEAAIBAAAAwwgAAkEEAAGBCAADoQQAAhEIAAERCAACAQAAAgMEAAOBBAACAvwAAIMIAAJTCAABAwQAAgEAAANDBAAAAQAAAgkIAALTCAAAAAAAAsMEAAPDBAABwQQAAAMIAAKBAAADgwQAAGMIAABDBAACCQgAAyMEAAPBBAAAQQgAA-MEAAGxCAADgQAAABMIAAKhBAAAEwiAAOBNACUh1UAEqjwIQABqAAgAA4DwAAOA8AADYPQAAML0AAHA9AABsPgAAgDsAANa-AACgvAAAyD0AAMg9AABUvgAAcD0AAEQ-AABcvgAAFL4AAJo-AAAQPQAAEL0AAFw-AAB_PwAA2L0AAEA8AACAOwAAVL4AAAy-AAC4PQAAmL0AANg9AAA0PgAAJD4AADA9AABAvAAAyL0AAKi9AADgvAAAFD4AAPi9AACuvgAAgr4AAPi9AADIvQAAVD4AAIA7AABMPgAA4LwAAKA8AACIvQAARL4AAIi9AADgvAAAUL0AADw-AAAkPgAALL4AADA9AADyPgAA2D0AALi9AABEPgAAML0AAJg9AAAUPgAANL4gADgTQAlIfFABKo8CEAEagAIAAOi9AAAQvQAAoLwAAC2_AAAwvQAADD4AALI-AACYPQAA-D0AADA9AACIPQAAJL4AAFC9AADgvAAAED0AAIA7AAAwPQAAJT8AAFy-AADCPgAAoDwAAGy-AAAQvQAA2L0AAIg9AAAQPQAAgDsAAEA8AABEPgAABD4AABA9AADgPAAAVL4AAPi9AAAcPgAAoLwAAOA8AABAPAAAPL4AAHA9AABsPgAAUL0AAHQ-AABAvAAANL4AAHA9AAB_vwAA-D0AALi9AABAvAAA-L0AACw-AAC4PQAAgDsAAOg9AAC4PQAAEL0AAIA7AABwPQAAgLsAAHA9AABkvgAA4DwAAAQ-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=D1PhqYvy-UU","parent-reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["5873510952185549953"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"2664802134"},"2142537052207044211":{"videoId":"2142537052207044211","docid":"34-6-7-ZC90CDDC2235181FC","description":"This video explains how to determine the particular solution to the differential equation y'=y^3 with the initial condition y(0)=1. https://mathispower4u.com...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2848328/681ef72f13c1084cef2bbed58a53100a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/vPcuFgIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","isAdultDoc":false,"relatedParams":{"text":"(Ex 1.1.5) Solve a Differential Equation in the Form y'(x)=f(y): y'=y^3, y(0)=1","related_orig_text":"Y.Y.F.","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Y.Y.F.\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=iMSJVcov0AE\",\"src\":\"serp\",\"rvb\":\"EqsDChM1ODczNTEwOTUyMTg1NTQ5OTUzChMyMTQyNTM3MDUyMjA3MDQ0MjExChQxNjQyNDE3NjUzMzA0MjE1NzIxMgoUMTIxMzczNjk5ODEzODY1OTU2OTkKEzUzMzc2OTMxNzc2NDUyNzkxNzkKEzc1ODM0MTg4ODczNTI1Njk1OTkKFDEwNDI4MTAxMTcwMjk3MTg1MDg3ChIzNDQ1NjQxMDM3NzQzMjExMDgKEzU4MTQ5MDIyMTYyNzY3Mjc4NDMKEzk3MjQxNDI3MjU5NjA5OTY4NDEKEzQ1MjAzNzA1Njc3NTAwMTk4MDUKFDE4MTU2MzA5ODIwNzUwMDIxMDc2ChQxNTkwNjkwNTE1MjY5MzMxNTk4NwoUMTY3ODc3NzIxNTE1ODg3NDA5ODUKEzYyNzgyNjE5Nzg3MjY0NzA0MTgKFDE0MzgyMDExNjQxMDk2NjgwMzU2ChM1MDk3MzMwMjg0NDYwMzM2NzQ5ChQxMDk4NDU1NDM1MTI0MDk0Mzk5NgoTMTYyODgxNTE0ODA2Nzg4MjIzMwoTMTk5MDc0ODc3NjM3MDUwNzg4ORoVChMyMTQyNTM3MDUyMjA3MDQ0MjExWhMyMTQyNTM3MDUyMjA3MDQ0MjExaogXEgEwGAAiRRoxAAoqaGhlaHZkdGhocWNleGtwYmhoVUNOVk14Uk1Fd3ZvOUFTLUpmaDZmUUZnEgIAEioQwg8PGg8_E-QCggQkAYAEKyqLARABGniB-wQBAv4DAPgBAAr3Bv4CD_P6AfcA_wD2-vv9_gL_AP8CBvn_AQAAAQz7_QUAAAAM__wB_v8BAA0CBv39AAAABf_0BvYAAAAOA_j-_gEAAP_t9fYB_wAABQEA_f8AAAAADQH6_f8AAPIGCQ0AAAAAC_8F_gAAAAAgAC2ddds7OBNACUhOUAIqhAIQABrwAX__HgCoDOz81gT2AOkd5QCX9S3__DvMAM7qDf_J1-gAzAgMAAsH5P7dAEYAvE3yABzR7__syuYAKdDu_tb9-gAYBPYB-9b2AmT7-wHe9-L_xCYg_dvvEv4a773-9v8CAf7jGf_u6c7-DOivChziMwMVIR3_-dIVBOQGAwDPC_UCtsXa_Q7pGQn7yDP_9vMr_gLX8gMBGAP53wMHDQD4EvwR0Q77GEjm_zAIHQDFCewO1wXUA_0qyPwZJSj-9vjx7eoCCPnt0BLvAt74DhXG_PLr6g_6J7D6Cx_v4vbS1_cJ7dzq9bQz-Ab1A_8I7OQE9SAALTgcAjs4E0AJSGFQAirPBxAAGsAHjzTYvj8tkLweLAi9pZ2PvUTkz7yFS728vMravUAYwz0iT7O72pAfPqYFMzvnrZk6bOxSvndkUT0DKhe9y4AzPubRiL2YYjM8GYGivUC1uz3hpF-9t7IkvikVwzxE0GK8o4osvH1ft7s5QcA70R8qPuqwIr1Qwsy8hWB1vRsWXr2Bfjq8phoMPZuQVr2alrs7eMAKPAS3BL3GSrE8hh5xPU-bJ73Vgi29xMF0PfwcvLoOsYu71jEzvY1S-Dw0P8i84Z-tPJ_a6jx5qM-4SXQlvQhcEr3-XHq7wWVfPC3Tjjt3lNQ8s5Kcu8bSwT02qMO7YpOpO3EqyL3Iaqm8bazkvaYRLj2UTsE7Puq_Pei0-Dx2Co-37fECvgG5ST2mzkg8YYg8PSHJLL1h3Z07pUuvPQDblj2ZYaO61IXzPLrSVzwziUG6Y2A9PQ8uyD19-e48x458PTAvwDsm2-W8To7MPR56IT0-LuC7136cvX1d5j0E9iA7gjDBPD_1-jvShLO7hBwIPMO2Kj2CChw82YiWu0ueYb2SBQ68zvIGvZA4ir2cy0O8Yy-fPSb_oz24YjW8Wz6XPfikw72o1Dq7x3lJvHVnmjrNGyu76Lv7PQsWXb2g5hw8TQVGvWGq2TxHV2m7eCPYvM3IlT0yHR27fTuuu7Wlzj0-auG6NM8bPXaTDr0B4Z478E_pPfym0L0BHb05ZoWyPdY6cbyqC1s7gVv3PQhLlr34X-44BMomvb13bbtN5oo6qKwmvCbfTL10uaq5oZ3TPVGBmL2XnVE5SC8vPRvUfrwCxga5G-qhvbJblT0s2Zk4HaKbPHm5ALv73Qo5cErUPMhRSr3NhYq5ZuUtvUl0QL2lX7M53_X-PPj2Mz0xNmk5FByDvcckrb0aURU4nVI0vTeffz2YhJK4avFuPciSfj2QDg44ox4nvUYcvLyEj6m3CKnAvASp1Lzr2Uc5vH0RvfUnNj3h9bo4Wq-DPQGPw72m0Vo53fNXPcdXUT0Heh83u89WPXslmj3WzBM4ogipPTxQ5z3EjfY49f9DO8d5ZL2vY7W3T9GsPcONCj2p3Im4wku1vY1NAjwNuk82AooHPJ85oL2zEZ23cdsoPRIF6bzJQ7g4TA2OvfkMzTyLHdw39wEoPnBh3b3xZ7-5RHiqvEF9i7w_dUI3PHHUvMmdCL3xG4C3BxSguskgtz3C15q33I1UvZ0ns70sNBK4yvRwPSLhKz7xy4o4GCc5vZRDpT1llMe43LJtvU6XKr2NP1g3B8mnvAI-ST0wAdi2IAA4E0AJSG1QASpzEAAaYDr2ACgGOgAsDS3o89kdE8vN6NgF1-H_9uAAFxrmHQ002LXsHP842hHTpAAAADn28ybBAB1xBNXoQQMY7uq66e0pf_AuAczlOhDUq0cXz_QOBvwhWADQF6wdQCS2GSALTSAALTOSGjs4E0AJSG9QAiqvBhAMGqAGAAD4QQAAgMAAAKJCAABgwgAAiEIAAIBBAAB8QgAAgMEAAJjBAADAQQAAyMEAABDCAAAQwgAAUMEAADxCAAAgQQAAAEEAABTCAAAwQQAAMMIAAMDBAAAAAAAAPMIAABBBAADgwQAAPMIAABTCAAA8wgAAmEIAAKhBAABgwgAAoEEAALLCAAAgQQAApMIAADBBAAAwwQAA3kIAAODBAAAYQgAAUEEAACBBAAAgQQAAyMEAAJpCAACWwgAAiMEAAOhBAABgQgAAYEEAAGTCAACAQQAAkEEAAABBAADwQQAACEIAAADDAAAkQgAA2EEAAERCAABQQQAAiMIAANDBAACUwgAA2EEAAJrCAACwwQAA8MEAAATCAAB4wgAAPEIAAI5CAAB8wgAAVEIAAFzCAAA8wgAAUMEAAODBAAAAQQAAIMEAAKDBAABMQgAAuMEAAAxCAAAAwQAAQEEAAPBBAAAcQgAALEIAABjCAADAwAAAbEIAABTCAAAAwgAANEIAADjCAADgQAAAUMEAALhBAACQQQAAhMIAAMBBAADoQQAAsMEAAGDCAAAwQQAABMIAAEBBAAAwwgAAiEEAAAhCAACAQQAAuMEAAAzCAACAwQAAYEIAAIBBAAD4wQAATMIAAAjCAADYwQAAHMIAAIjBAABAwQAA4EAAABBBAABAQgAAwMEAAKBAAAAAQAAAmMEAAATCAADQwQAAhEIAALhBAACQQgAAQEIAAKBBAABAwAAAYMIAANjBAACgQAAAXEIAAPDBAACoQQAA-EEAAGDCAAAwwQAAcEEAAJDBAADgwAAA4EEAAABCAADAwAAAIEEAAKDBAADQwQAA-MEAAJ7CAAA8wgAAcMIAABBBAADgwAAAHMIAAIDBAAAEQgAANMIAAHxCAABQQgAAAAAAAODBAAAAQgAAQMAAAOjBAABQwgAAmMEAAIBBAAAkwgAAMEIAAMDAAADYwQAAcMIAAJDBAADYwQAAlEIAAKDBAABYwgAAZMIAAJhBAABwQQAAiEEAABDCAADgQQAAiMEAABRCAACGQgAAEMIAAKDBAACgwAAAEMIgADgTQAlIdVABKo8CEAAagAIAALi9AAAQPQAAXD4AAEA8AAD4PQAAuD0AAFC9AADavgAAqL0AAEA8AACIvQAAZL4AAEA8AABEPgAAED0AANi9AABEPgAAgDsAAHC9AABEPgAAfz8AAFA9AACoPQAAuL0AAES-AAAMvgAAED0AAIi9AACgvAAAVD4AANg9AAA0PgAAUD0AABC9AACIvQAAQDwAAMg9AACIvQAAXL4AACS-AADYvQAA4LwAADw-AACgvAAA4LwAANi9AABQPQAAmL0AAGy-AABUvgAAMD0AAOA8AAB8PgAATD4AAES-AACAuwAA9j4AAKC8AAAwvQAA-D0AABC9AACYPQAAPD4AAFy-IAA4E0AJSHxQASqPAhABGoACAAA8vgAAEL0AANi9AAA9vwAAEL0AAKC8AACKPgAAmL0AAIi9AABUPgAAMD0AABS-AAAcvgAAHL4AABA9AAAwvQAAgLsAABc_AABwvQAAtj4AAMi9AAD4vQAABL4AAOC8AADgPAAAUD0AAOA8AABwvQAAXD4AAEA8AADgvAAAED0AAJi9AABMvgAA4LwAAIC7AACAOwAAQDwAABS-AACgPAAAUD0AAIg9AADoPQAA4LwAABS-AACYPQAAf78AAKA8AABQPQAAEL0AAIC7AAAMvgAAqD0AAOC8AAAQPQAAoDwAABA9AABQPQAA4LwAAEA8AABAPAAANL4AAOC8AAAUPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=iMSJVcov0AE","parent-reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":718,"cratio":1.78272,"dups":["2142537052207044211"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"1703804481"},"16424176533042157212":{"videoId":"16424176533042157212","docid":"34-8-12-Z53D120584C083EC1","description":"Join this channel to get access to perks:→ https://bit.ly/3cBgfR1 My merch → https://teespring.com/stores/sybermat... Follow me → / sybermath Subscribe → https://www.youtube.com/SyberMath?sub...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2957535/c38e5bba2579eb5769818c130fec279d/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/qUMS-wEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","isAdultDoc":false,"relatedParams":{"text":"Solving y'=(y/x)+2sqrt(y/x), a Differential Equation","related_orig_text":"Y.Y.F.","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Y.Y.F.\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=YTqR1pzI8Fs\",\"src\":\"serp\",\"rvb\":\"EqsDChM1ODczNTEwOTUyMTg1NTQ5OTUzChMyMTQyNTM3MDUyMjA3MDQ0MjExChQxNjQyNDE3NjUzMzA0MjE1NzIxMgoUMTIxMzczNjk5ODEzODY1OTU2OTkKEzUzMzc2OTMxNzc2NDUyNzkxNzkKEzc1ODM0MTg4ODczNTI1Njk1OTkKFDEwNDI4MTAxMTcwMjk3MTg1MDg3ChIzNDQ1NjQxMDM3NzQzMjExMDgKEzU4MTQ5MDIyMTYyNzY3Mjc4NDMKEzk3MjQxNDI3MjU5NjA5OTY4NDEKEzQ1MjAzNzA1Njc3NTAwMTk4MDUKFDE4MTU2MzA5ODIwNzUwMDIxMDc2ChQxNTkwNjkwNTE1MjY5MzMxNTk4NwoUMTY3ODc3NzIxNTE1ODg3NDA5ODUKEzYyNzgyNjE5Nzg3MjY0NzA0MTgKFDE0MzgyMDExNjQxMDk2NjgwMzU2ChM1MDk3MzMwMjg0NDYwMzM2NzQ5ChQxMDk4NDU1NDM1MTI0MDk0Mzk5NgoTMTYyODgxNTE0ODA2Nzg4MjIzMwoTMTk5MDc0ODc3NjM3MDUwNzg4ORoWChQxNjQyNDE3NjUzMzA0MjE1NzIxMloUMTY0MjQxNzY1MzMwNDIxNTcyMTJqhxcSATAYACJEGjAACiloaHZha3NmZHd4Z3FjcXpoaFVDVzRjem9rdjQwSllSLXc3dTZhWFozZxICABEqEMIPDxoPPxOuA4IEJAGABCsqiwEQARp4gfsL_gD_AQAA-wYJ9wj8Ag_9BgL3AAAA_fH0-P4E_gDuAAX_DQAAAPAV_v8EAAAABwYDBfn9AQAQAff8BAAAAAD8_gb5AAAADv_tAf8BAAD5Afn4A_8AAPv3APf_AAAAAA4B-f3_AADvDPwFAAAAAAv_Bv4AAQAAIAAtCGHVOzgTQAlITlACKoQCEAAa8AF_FPv_2faqAeMM6gDu5QcBsCP4AAk08ADK4uoBtCLtAAAP3QDtIBj_2TUJ_qMn0QAfAb8A_-PkAT_a_AA6wwwA8ucCABL-4gFEFwT_DAzx_sgGH_8h1wIC9_LNAAkMzf4i7xX7GPPfAOwDvQIKITkDAuks_B_YE_3wwQj_9Pby_fb72wDWEvn_AwIG-sP-IgEC2fMCHd4I8tEa1gAA-BH86OEK8wgy0v0nDvcFSAr2_8Pk_gYjzwn-AwkdA-su9QnLDSEB0EAA_Q0xFvn_2-kK6urpCwbu3QQX-wcQ7ekAChbZ6gIWDAn8-iPz_x0A7uwgAC1SbQk7OBNACUhhUAIqzwcQABrAB6ytuL7PMou8VutpPKNTPL30yBu8600xvBTamL0nT3k9CxGJu59bOD7nE3692Ao_vGg3j70mftY8QPyXvBSUQj5GRRy9c-gAvIc0Kr6eaag9tnJlvI5ArL2h8Sk9mqmYu4z4mb32llU6xq04vH55fD0ZxbK8Fp48PAK1Xb1fehs907AuvSgTMj2wXyu9sac9velDp71D6Jy7pIM_vC5ZpT1jQky8HwhaPLPNcj1B-4c8CvfKvBaSYr0RXnW7PvTTvC9Ndj3GlYk9wutEPEQgvb20YD29W9VHOSv77ryZ2SI9Y6wfPCZAqD2QqCs9b9GuvNjCBz1Ex5m98juyvCi5A74WLza94j4SPfB_bD1mqcA95WUJPBjSAb5Jg6s9liYlvKQDqzvGeQ496UdDvM98oz24MlI9p9BUPNkSCL2-hqC8-RxtO1zrxr0-tM88IX3uPOz6BT3ZmeK9q6unvFZHbj1_6Hg9qxPGvJLbwDzWnTi9TkA4vM9PLL2HDHU88nwCO88DDj3feTi9Sw-3OwUjpT3WAju-SeWaOld7OL0vh_29KqBmOk2mJT1qeW8969gQPPD5YT0UXw2-d4QRu7892TxOHXW8OVtlu4pm77wFrDC7GV9qvJfiKr3L3Q66QNTku62BMr23VsU8_jD8u66JAL2LH3497JF5OoXoVT01cLG9IscZOm1YUz3V7Uc8MufXuu3UDD4h1Ls8jqYLuJWNjT3qN5i9hVVvOuIAP73J3Yy8w6nmOtq65bzANbG9UlkOuu6vDj6fEpG9ftCUOf2VH70uk1w9vlinuMT3dL0nZl47c_4QOSMhsD0de7G9nUhmON0qo7xXPcC9kQYeObHrrT0C3l287kICOdDWIb2Ylpc9YHbdObPFILtRQMS9bz3sOPQA8bsNPBK9ni2sNoXNRT1hm568ct_SN04W7bzoCCo8RVtiNy1zPz0A-HG9nIObuAArdjwIsEM9l5NPOCZyQbwKMSe-lAPEOcRWdbzEsCg9wxWTODormDwS-Z49bJ6HuBZxVzs0pKU97TcCuAacJbyMatG9-lP3N5CZMLyt5g89xyYWOFo0o718Wko9ciBsOJpKOj2BVkO7306ROOfXvbvfjHW8COFDuBIykDzEgzw9isWjNy-mGT54O8w8_OYbuSvcE7xklQK-cT0buM5yNLxdD8u9qHCbt5vSj7vi5I49YN5HN-wDvTt81A--F_rcuMr0cD0i4Ss-8cuKOLoTrLxy3Lk9dDAYuVXXxr27mVG8-Zpbt9jrAr0qozY9mPJtNCAAOBNACUhtUAEqcxAAGmAc_QAtKzTlFAAW8-7PF_e99ffo7tgJ__O1_0kL0-EYELfO6vL_UM8C3JoAAAA0vRD__gA1f_n6_WrbAO7Hw6Q6Ymv-9hrh2Tn40fxcIAv3KQ3V51MAviWuKBkFtxsL8S8gAC2FWBI7OBNACUhvUAIqrwYQDBqgBgAAwEEAAITCAABwQgAAKMIAAJhBAAAIwgAAukIAANBBAABswgAA2EEAACRCAAAAAAAA2EEAAAAAAABwwgAA4EEAAEBCAACAQQAAAEIAAKBAAABQQQAAAMEAAJDCAAAgQQAAhsIAAIA_AAAUwgAAJEIAAABCAADAQAAAQMIAAPjBAACywgAAJEIAAIDCAADIQQAAHEIAAEBCAACgwAAADEIAAEDAAACwQQAAGEIAAFDBAABwwQAATMIAAKxCAAD4QQAAEEIAANBBAAAAQQAAUMIAAKDBAAAwwgAAgMEAAHRCAAAEwgAAkEEAAEhCAABsQgAAiEEAAMbCAAAUwgAA8MEAAEzCAAC0wgAAPMIAAEDBAADgQAAAmMEAAABBAAAcQgAAAMIAAExCAADowQAANMIAACjCAABIQgAAgL8AAIhBAABgwQAA3kIAAFDBAABAwQAAAAAAAABBAACAQQAAQMAAAJhCAAD4QQAAJMIAAARCAACgwAAAwMEAAEBCAACYwQAAkMEAAABBAACAQQAA6EIAABTCAAAgQgAA-MEAABBCAABAwgAAcMEAAMBBAAA8QgAA6EEAAFRCAACGQgAA0EEAAADAAABEQgAAYMEAAIBCAAAYQgAAiMIAAKBBAACAPwAAgL8AAK7CAACgwQAAMMEAACzCAAA0wgAATMIAAKBAAACawgAANEIAAMjBAAAwQQAAuEEAAExCAACuwgAAYEEAAAxCAABAQQAAmMEAAEjCAAA8wgAATEIAANhBAAAQwgAAjkIAAHRCAAAAwgAAQEEAAMBAAADgwAAACMIAACDCAACAQAAA4MAAAGBBAAAgQQAAXMIAANDBAABkwgAAIMEAAMDBAACAwAAAUMEAABzCAADAQQAA2EEAAIDAAACYQQAAFEIAAJhBAABAwQAAQEEAAEBAAABUwgAAhsIAABDBAAAgwQAAQMEAAKDBAAB0QgAAtMIAALhBAAAQwQAAQMEAACxCAADowQAA8MEAADDBAAAAwgAAmEEAACRCAAAQwQAA2EEAAKBAAABAwAAAKEIAAKBBAAAkwgAAgMAAAIBAIAA4E0AJSHVQASqPAhAAGoACAABAvAAAgDsAAHw-AADovQAA4DwAAJo-AADgPAAA9r4AAEC8AACgvAAADD4AAGS-AABwPQAAdD4AABS-AACIvQAAkj4AAEC8AACAuwAAZD4AAH8_AAAwvQAAqD0AABA9AAAsvgAADL4AAAw-AADgvAAAmD0AACQ-AAAkPgAAyD0AADC9AACYvQAAoDwAAEC8AADYPQAAEL0AALK-AACKvgAA-L0AAPi9AABkPgAAQLwAAHA9AAAwvQAABD4AAFC9AAAsvgAAFL4AAIA7AABwvQAAdD4AADQ-AABkvgAAQDwAAAU_AADIPQAAuL0AAAQ-AACAuwAA2D0AABQ-AADIvSAAOBNACUh8UAEqjwIQARqAAgAA-L0AAIC7AABAvAAAH78AAKC8AABwPQAAgj4AAHA9AABQPQAAPD4AAJg9AAC4vQAAiL0AAOi9AAAQPQAAgLsAAIC7AAApPwAADL4AAMI-AACIvQAANL4AALi9AACIvQAAmD0AABA9AACgPAAAgDsAABQ-AAAwPQAA4LwAABA9AADovQAABL4AAOg9AACIvQAAgLsAAKg9AABUvgAAUD0AALg9AADgvAAAHD4AAOi9AADIvQAAcL0AAH-_AAD4PQAAQLwAALi9AACovQAAED0AAIg9AAAQvQAADD4AABA9AACAuwAA4LwAAOC8AADIPQAAoDwAAHS-AABQPQAAJD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=YTqR1pzI8Fs","parent-reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["16424176533042157212"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"1825119565"},"12137369981386595699":{"videoId":"12137369981386595699","docid":"34-8-11-Z3D2F55B201231627","description":"Solve the following differential equation using Laplace Transform: y'' + y = f(t) f(t) = sin t , 0 less than equal to t less than pi cos t, t greater than equal to pi y(0)=1 y'(0)=0...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1623535/4c4200389fec14f9d3cbcfc6a537b304/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/BeHX2wEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","isAdultDoc":false,"relatedParams":{"text":"Differential Equation using Laplace Transform: y''+y=f(t) , y(0)=1, y'(0)=0","related_orig_text":"Y.Y.F.","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Y.Y.F.\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ebfeq9F-6uo\",\"src\":\"serp\",\"rvb\":\"EqsDChM1ODczNTEwOTUyMTg1NTQ5OTUzChMyMTQyNTM3MDUyMjA3MDQ0MjExChQxNjQyNDE3NjUzMzA0MjE1NzIxMgoUMTIxMzczNjk5ODEzODY1OTU2OTkKEzUzMzc2OTMxNzc2NDUyNzkxNzkKEzc1ODM0MTg4ODczNTI1Njk1OTkKFDEwNDI4MTAxMTcwMjk3MTg1MDg3ChIzNDQ1NjQxMDM3NzQzMjExMDgKEzU4MTQ5MDIyMTYyNzY3Mjc4NDMKEzk3MjQxNDI3MjU5NjA5OTY4NDEKEzQ1MjAzNzA1Njc3NTAwMTk4MDUKFDE4MTU2MzA5ODIwNzUwMDIxMDc2ChQxNTkwNjkwNTE1MjY5MzMxNTk4NwoUMTY3ODc3NzIxNTE1ODg3NDA5ODUKEzYyNzgyNjE5Nzg3MjY0NzA0MTgKFDE0MzgyMDExNjQxMDk2NjgwMzU2ChM1MDk3MzMwMjg0NDYwMzM2NzQ5ChQxMDk4NDU1NDM1MTI0MDk0Mzk5NgoTMTYyODgxNTE0ODA2Nzg4MjIzMwoTMTk5MDc0ODc3NjM3MDUwNzg4ORoWChQxMjEzNzM2OTk4MTM4NjU5NTY5OVoUMTIxMzczNjk5ODEzODY1OTU2OTlqiBcSATAYACJFGjEACipoaGNrbmhvY2p1bXJneHdjaGhVQ1ZPNm9Wb3EtYzNpdmtOUVlfRWVzVmcSAgASKhDCDw8aDz8ThwGCBCQBgAQrKosBEAEaeIH8CQD9-wUA-QEACfgG_gIZ-wb_9gICAPP7_fwHAQAAAvsE_AMBAADyAQD7_wAAAAcGAwX6_gEADQD9A_sAAAD-9PwL_gAAAAYL-v3-AQAA7v4A9gIAAAAA_wT6_wAAAAEF_Qb5_wAB7f4FDAAAAAAH-AD-AAAAACAALaML4Ts4E0AJSE5QAiqEAhAAGvABfwcNANn15QHa9ur_wSj2AJ8OIP_8O8sA1vL0_9Tv6gH1DvoA6-zgAQgiFgHSLdkASfTC___gCP9G5OT_IqjnAuIF6gEL7NACI-koAfr6_v_-DSj-B6_e_f2-2QAjHbwA-AYL--7pzv4GNtEDPOwkAgT_TQEx3RICA5YBCNbd_wTp2NP94SXoBAPP_vjRHiUCDcYV_RgVCvnOHNMA3wEo_wntG_QyPs___9IHDBoYDPuq7fb99Cgg_Rcj_fXGAwr78fUsAu_x_fz1sw38QAQA_OkP6fj-9wEU4N0VAAX56QoP9vv07dXuBuXuBv3FBP_9IAAtXNEAOzgTQAlIYVACKs8HEAAawAfGNLO-rDkAPbtTDzzt8h2-ppwvvXXeMjr9hR6-AWpqPOHQW7yYMNo9BSCkvB7WZTyNtQ--p0OCPOWXgzsR_uU9qrVVvLeGiDzZQ0u-Q5J2Oyl_gr1EGF--1GRnO6WdPzw7noA9KMAGvZGM5jo86a496NS6uxNgZjrwSrc8clI4PY85T7yYrWu9F-VDvbxJAr3-1UM9YD55vXzWtTwSFgU-3wqXvP-jQD1cEGA9AJdWvY5RqLxdHka8EAaePGGZLb0JeZM9DdbJPPyOYTxwRBK9BBt8vJ1IED1WUIy90MEJvVoUkbyVUoY9IzHBPLtlYrxpM_M8Hm_yvdcl0zomNfS9fgMuPau6Aj3dYDg-KaZcPeMbPjqdhZi83hB0u6UNZTrbEbO8Dx4XvQ7cAT1-Nva7tOeiPcHwXzs8lDI8St-aPJ5rrTuZa5y9FLoiPMGYozz-H_E8fP5qvVwYzrwctk09kK4IvRJpm7zp8NC9bHowPenzkbwEonE93CMFvUErDTzC1tE8BUiJPZkd2DxgZ4Q9-RG_vT1rEjzHg229VxCOvZ23Vrx-OOg9QkCAO3x9ELwVkFY9v16Wvd1DwrvYdRm9HGpKPDNRJbtktmC7qASPvZo0GbttA3K9B2TKPMkCiTvY7oM8jV4NvaCVzbucZFA8j32KPS7LF7xkDb29QzrcvdCRN7ebG6g9x8mzO06oFjslSLs9nqAjPWBPK7kOqpM9Cev1vCovvzriAD-9yd2MvMOp5jpgQoC9gF9ovQrOaDmhndM9UYGYvZedUTkcYnc9565ju9YUtLnYWw-9u5nxPQlEirmnh1I9OblfvaxBhritL7c6_RLxvbwjiTmqSLW9e8itOj4spLjkgrM8DtcqPVDjaLovUPK9qFycvUOAv7cpuiS9DeU_PVmx2bhcDLQ9VW2SPFU0GjjBjAk9LCz6O9-hVzqfuzO9JTubPNJ4IzndF5G9wVLCPPUEC7j8Vss9CBc8vQPuAzl4rCO8rp9-PX0E0zgHlsQ7Wq_xurZLsbez00o9rZ2PO0RM9rbTzwg8ZjHRvT5Llzbb0J49duOYPVAF9bhr8em9edYkvO4vYDb-G6q8fXsyvag-zzd84YQ8N_ywumzM1DbMSi49m1JDvVq2S7itp_Y9s-qYvHs7OrkWTgK-MKtmvVUqVjjDEYM5UFUhvYShK7cyC7O9Ev5APbJytjcU9E09tL2nvZeXjbci_-w9NSkFPvN-W7hmXAK9dBZMPYB4mLjpCyG-K3wHPe62WTjrFga9STKGvLuFnzggADgTQAlIbVABKnMQABpgIfUAMxlF1Qz-_usI2_AU9NAYz_6qHv8J6AAvC9MPESnPuw4Z_x78C-KmAAAAHQQYCgoABGzx8NQr4Czd7Zv_HTZ_HAAs4tcRC8TCJBn66BbaNSRMANAIyhMr5MFSCBwlIAAts4QlOzgTQAlIb1ACKq8GEAwaoAYAALhBAACwwQAAIEIAAMDBAACQQgAAgL8AAIpCAAD4wQAA4MAAAFRCAAAAQQAAOMIAAIDAAAAAQAAAAEEAAMBAAAD4QQAA-MEAAKBBAABgwQAAuMEAAMDAAABgwgAA4MAAAPjBAAAQwgAAEEEAAIDCAACEQgAAwEAAAEDCAACgQQAArsIAAAzCAACewgAAYEEAAPBBAACAQgAABMIAACxCAAAwQgAAgL8AACBBAAAQwgAAZEIAAMDCAAAgwQAATEIAABBCAABAQQAAoMAAABDBAACAQQAAwMAAAJhBAAC4QQAA1sIAAFBBAABwQQAADEIAAGBBAABowgAA4MEAAGzCAAAUQgAAsMIAADzCAABQwgAAoEEAAGDCAAD4QQAAJEIAANLCAADAQAAAOMIAAMDBAABAwgAAYEEAAKDAAACQwQAAAMAAAM5CAAAYwgAAAEEAAHBBAAAAAAAAAEIAACBBAAD4QQAAwMEAADDBAACoQgAAVMIAANhBAABYQgAALMIAAIjBAABQwQAA4EAAAIBAAAAIwgAAIMIAAAhCAAC4QQAANMIAADBCAACgwAAA8MEAAEBBAACCQgAAREIAAABCAABAwAAAgEAAAGjCAACmQgAAXEIAAIC_AAC8wgAACMIAAAjCAABUwgAAwMAAAHDBAAAAAAAAgL8AAKRCAAC4wQAAEEEAAIhBAAAMwgAAuMEAAMBAAAB8QgAAmEEAALRCAACoQQAAQEIAAKDBAAB8wgAAgEEAAHDCAACQQgAAsMEAAJhBAADgQQAAJMIAAOBBAADAQAAAYMEAALDBAADwQQAADEIAAIBAAADYQQAAwMEAAMjBAAD4wQAAIMIAAILCAACgwgAAEEEAABjCAAA8wgAAqEEAAMhBAABEwgAAiEIAAGBCAAAAQAAAGEIAADBBAADAQAAAyMEAABDCAABAQAAAoEAAAOjBAABoQgAA2MEAAKjBAAAkwgAA-MEAANjBAABwQgAA-MEAAETCAACewgAACEIAAMBAAAAQQQAAiMEAAJBBAACAvwAAsEEAAPhBAABwwQAAmMEAANhBAACIQSAAOBNACUh1UAEqjwIQABqAAgAAcL0AAIi9AACoPQAAgDsAAIg9AADYPQAAQDwAAPa-AACYPQAATD4AANg9AAAMvgAAqD0AAFQ-AAAkvgAAQLwAADQ-AACAOwAA2L0AAII-AAB_PwAAcD0AAKC8AABwvQAAdL4AAES-AAAwPQAAML0AAHA9AAAwPQAAmD0AAKC8AAAkvgAABD4AADA9AAAsvgAAZD4AAPi9AAA0vgAADL4AAGS-AAAQvQAAiD0AAFC9AAAwPQAABL4AAOA8AACgPAAA2L0AAI6-AACoPQAAcL0AACw-AABcPgAAFL4AADC9AAAdPwAANL4AAOC8AAAEPgAAyL0AADA9AACoPQAA6L0gADgTQAlIfFABKo8CEAEagAIAAPi9AACgvAAAQLwAABe_AADgPAAA6D0AAIg9AABcPgAANL4AAII-AACAuwAANL4AAKA8AABUvgAAgDsAAKi9AABwvQAAQT8AAFA9AABcPgAAEL0AAAy-AAA0PgAAiL0AAIC7AAC4PQAA4LwAAEA8AACKPgAAoLwAAEC8AAAwvQAAyL0AAJi9AACoPQAADL4AAEw-AAAMPgAAJL4AAAQ-AABMPgAAgLsAAAw-AACIvQAA6L0AABQ-AAB_vwAAQDwAALi9AADIPQAAEL0AAAS-AACiPgAAoLwAAFQ-AAAwvQAA4DwAABC9AAAUvgAAmL0AABA9AABAPAAAFL4AAKC8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=ebfeq9F-6uo","parent-reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["12137369981386595699"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"1389040073"},"5337693177645279179":{"videoId":"5337693177645279179","docid":"34-8-11-ZE989B58A3CCD55E6","description":"We will solve a 3rd-order nonlinear differential equation y'*y''=y''' by a substitution. WolframAlpha didn't give us all the solutions but here we will discuss how to solve this completely.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4595166/ed06a65a60e3c95ac6c1c0885fb905eb/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/pYyfggAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","isAdultDoc":false,"relatedParams":{"text":"Can y'*y''=y'''? (WolframAlpha didn't find all the solutions)","related_orig_text":"Y.Y.F.","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Y.Y.F.\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=q_VbMgjDGkg\",\"src\":\"serp\",\"rvb\":\"EqsDChM1ODczNTEwOTUyMTg1NTQ5OTUzChMyMTQyNTM3MDUyMjA3MDQ0MjExChQxNjQyNDE3NjUzMzA0MjE1NzIxMgoUMTIxMzczNjk5ODEzODY1OTU2OTkKEzUzMzc2OTMxNzc2NDUyNzkxNzkKEzc1ODM0MTg4ODczNTI1Njk1OTkKFDEwNDI4MTAxMTcwMjk3MTg1MDg3ChIzNDQ1NjQxMDM3NzQzMjExMDgKEzU4MTQ5MDIyMTYyNzY3Mjc4NDMKEzk3MjQxNDI3MjU5NjA5OTY4NDEKEzQ1MjAzNzA1Njc3NTAwMTk4MDUKFDE4MTU2MzA5ODIwNzUwMDIxMDc2ChQxNTkwNjkwNTE1MjY5MzMxNTk4NwoUMTY3ODc3NzIxNTE1ODg3NDA5ODUKEzYyNzgyNjE5Nzg3MjY0NzA0MTgKFDE0MzgyMDExNjQxMDk2NjgwMzU2ChM1MDk3MzMwMjg0NDYwMzM2NzQ5ChQxMDk4NDU1NDM1MTI0MDk0Mzk5NgoTMTYyODgxNTE0ODA2Nzg4MjIzMwoTMTk5MDc0ODc3NjM3MDUwNzg4ORoVChM1MzM3NjkzMTc3NjQ1Mjc5MTc5WhM1MzM3NjkzMTc3NjQ1Mjc5MTc5aogXEgEwGAAiRRoxAAoqaGhyd3BpemtjbnFuYWd4YmhoVUNfU3ZZUDBrMDVVS2lKXzJuZEIwMklBEgIAEioQwg8PGg8_E4EHggQkAYAEKyqLARABGniBBAf4_PwEAPkBAAn3Bv4C9gP9-Pn9_QDzAQYJAwL_AO0JAgX7AAAA-gr7AwIAAAD6BfH8A_4AAAj89v34AAAA-wP5C_kAAAAR8_v-_wEAAPb_9AID_wAADfUG9_8AAADz-v_8_P8AAPMQ8wgAAAAABv0MAQAAAAAgAC0S1N87OBNACUhOUAIqhAIQABrwAXr79AHdDOAA1yjWANgM6gGBAAL_GRPzANAK6gDwFP0A9RoIANno5QE76zMBwCcZARoBygDuE-0AHeT__yHxBwDkAw0BQ_4HACr8FgHt1vIAtwgM_9oC4QHu-eIAJjT1_vv8EQD3CuQCFAgAAfvuKgAE-RkCJOLx-gIJ_f7LDAoA7uHd_sfk-wEL5x79s_8ZBx_eCQL6Jgj8Ci789gff-fkB8QwCNfXs-xYHAwTiuwkAx_TiAAjs-wgH6iYG4-X1A-nxFvnq1gsDHgb39gXdD_YGD_UG69sAAuflEADw-Aj_DRzz_wAA9APoH_0G6OH5BCAALb9PJDs4E0AJSGFQAirPBxAAGsAHelHjvm9RILqFMkM89wvRvHrZQDx4bPq8fKGbPCLdFD2AxGU8VNebPc-SkTyvuPY7dHzEvhyE7zyZ2i29Jv_zPfEFt72gZSc8dckovtpUnT2TkKM8HZHPveQKiT2NwgG88Ib0Paez0zx3mxy9snWaPaXL0bwt6AG8CBQquqyF_rzWh5o8839dvYGGDb0dkYy6G8lUvJ_xM7y5cB486-CwPX94jLx8FU-8VH9OPcbqgzvslu48tESCvIAp4z1Zqfu7fPNrPuMLCb1HeBq8ILjqvTyX8zvEgSu9D0LEump-4zpcilC8LCqyve7cmr2hOBY9s-NQvFAYGT1SCRM8kwddvSw0RrxIrCC9Puq_Pei0-Dx2Co-3-Fg1vZJFVT0ArgS932zTPUD7kTwjLKo70_rbvGyZyjpqt8I8My02PSAqTT2lKx47dknmPF2ABz2Cy526ZD31vXmEiT3EYvG7ssuBPGoEgT3JDIq8SlfVvL0ebL3iMri84jOjvbKQb7xgPtW7871QPSJrETzWbn07zaR3PYdksr1tCGm8U4IVPOimqL3bXAq8dH7KPGokcz2FxKi7QZSJPW0lL707SPw6bwbJPUvQer3T3Io7A6-7PbjCQD3nmx878u8SPGo1wTsZUPM7rYEyvbdWxTz-MPy7sIKJPf2Qbbx9cGM8lY14veuuh7wMIk471bx5PZt9-jmC0DQ7xvxcPMaNFr0htaI51ZUPPtTsRr3lRxm51KCBO3QVsb0-s1u4D3ysPbygdDwHnIQ6R0-2PRbSKzw0zoc4ovdBvTQgvD0dRHu56-PhvXWICbwkthW5U7MnPdKQTL0zGpQ4QTFtvUHfDjwlIzC3otd6vKgRZL3dBEu5TKWfOqaOn7xycHE38bkzPRBV3Tx1ZWC5gnUcPY0iwD1uqjs5V9mtvKMDcr1Mh9e4vweUvCKqi7yyRQa5DTO4u7r4m7ywvgm64ZbPPXBeXD2mlHC44pIDPo7Dpb2CMaE5V6AMvU92kz3qSGe4IgnxvFjfgjv26A64j3gJO_6eyL3x7a84SBjGPMww5DylxmI4Y-g9vWor-jtnaJU4yuEDvhDXHjyX_U43OcuRPeLRYb26rGQ4IfywvKjj8b3UoaY4FYNRPG9WzrwlJhA4VbGCPJ0spb16R4M3qds5veZ_STvBUfA3eNyWPZl2W73hv8c4GROMvSdQRDwV-FW49nR6PeAP370_mZu3oBcOPRclvT0ofwA5SK0LPQN3JT2G9ni4o2K3vOhY1DzE1fO2-zAMPTX7Mj3Wqpw3IAA4E0AJSG1QASpzEAAaYE3uAP4CJvnr_Cj-AdH_4c37-PH0oiL_4c__GRcZ-Q0128gW4f8XzxfBnQAAAC_9AfUBABd_V_r7PhcPHqi8wDMNeRgtMfAXVO-t7TMaFvYgCfo7QwC5FKchDb_LWzz9LyAALWPDEzs4E0AJSG9QAiqvBhAMGqAGAADAQAAA1MIAAFRCAAAkwgAABMIAAMBAAABMQgAA8MEAAPDBAACAQAAADEIAACTCAAC4QQAAqMEAACDCAAAgwQAAlEIAAKBAAADAQQAAYMEAAFBCAACAvwAA8MEAAABAAACuwgAAfEIAAKDCAAAsQgAAwEIAAGDBAACgwQAAgMAAAHzCAABAwQAAlMIAADxCAAAgQQAAVEIAAEDBAABwQQAABMIAAIBBAAAMQgAAkMEAAMBAAABQwQAAHEIAAGBCAAAcQgAAqEEAAKBBAABUwgAAuMEAAABAAABAwQAAXEIAANDBAAAAAAAATEIAAPhBAADAQQAAhsIAAOjBAADWwgAAksIAAETCAAAQwgAAYMEAABBBAACIwQAAIMEAANBBAACuwgAAYEEAAATCAACIwQAAbMIAAOhBAACIwQAAcMIAAOBAAADcQgAAQEAAACBBAAAwQQAAiEEAABRCAAAgwQAAwEEAAAjCAAAswgAAhkIAAOjBAADwQQAAgEEAAPDBAABwwgAAgD8AADBCAACsQgAAAMIAAJBBAACAQAAABEIAAIDCAADAQQAAgMAAADxCAACQQQAAnkIAAHxCAACgQQAAyMEAANhBAAAMwgAAwMAAADRCAACIwQAAAMEAAJjBAAD4wQAAzsIAAPDBAABQwQAAoMEAAKjCAAAgwgAAYMEAAGDBAACoQQAA4MEAAHBBAADAwAAAHEIAAJbCAABIQgAAoEEAAIDBAAAgQQAA2MEAALDBAABQwQAAUEEAAATCAAAIQgAACEIAAAzCAAC4QQAADMIAAIBAAAAAAAAA6EEAAGhCAACAwAAAMEIAAFDBAADYwQAAwMAAABjCAACgQAAAAMIAABBBAAAwQQAAkMIAAJhBAABMQgAAoEEAAKBCAACwQQAAAEAAAIA_AAAgwQAAAMEAACDBAAAUwgAAQMAAAODBAACAQAAATEIAAIhCAAC8wgAA6MEAAAzCAABAQAAAyEEAAEzCAACgwAAAUMEAAJjBAAAQQQAAiEIAACjCAADgQAAAoEAAAPjBAACiQgAA6EEAANDBAADAQQAA6MEgADgTQAlIdVABKo8CEAAagAIAAOA8AACIvQAAgj4AAIi9AAB0PgAAmD0AADQ-AADWvgAALD4AAKA8AABwvQAA-L0AAOg9AAAUPgAAoLwAAHA9AABMPgAAgDsAAIi9AACuPgAAfz8AABC9AACIPQAAML0AAHy-AADovQAABD4AAIA7AAB0PgAAXD4AAPg9AABwPQAA4LwAAIg9AADYPQAA6L0AAIA7AAAQPQAAjr4AAI6-AABAvAAAgDsAAII-AAAwvQAAEL0AAHC9AAAUPgAAqL0AAKi9AACYvQAA4LwAADw-AACoPQAADD4AAEy-AAAQPQAAET8AADA9AACgvAAAmD0AALi9AABQPQAAuD0AAI6-IAA4E0AJSHxQASqPAhABGoACAAB0vgAAcD0AAAQ-AAAnvwAAUD0AAMg9AAB8PgAAoLwAAJg9AAAkPgAAmD0AAAS-AACAuwAADL4AAEC8AABAPAAAUD0AACs_AAAMvgAAhj4AAMg9AAAUvgAAED0AAHC9AACAuwAAMD0AAIA7AACoPQAAVD4AABA9AAAwPQAAuD0AACS-AAB0vgAAUD0AAKg9AAAUPgAAXD4AAFS-AAAQvQAAND4AALi9AACGPgAADL4AABA9AADoPQAAf78AABw-AADgvAAA2D0AAIg9AABAPAAAfD4AAOC8AACIPQAAED0AAIC7AADgvAAAEL0AAKA8AACIPQAAjr4AABA9AACCPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=q_VbMgjDGkg","parent-reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["5337693177645279179"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"4270449064"},"7583418887352569599":{"videoId":"7583418887352569599","docid":"34-9-13-ZAAAF16B9E8643FCD","description":"We solve the initial value problem y'=y, y(0)=1 five ways, providing a quick review for a good portion of the material covered in a Differential Equations course. http://www.michael-penn.net...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1024500/e673ec6562c590c0648666b5065a00a9/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/UCNhCwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","isAdultDoc":false,"relatedParams":{"text":"Differential Equations | Solving y'=y five ways!","related_orig_text":"Y.Y.F.","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Y.Y.F.\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=C0KeMyZF0Sk\",\"src\":\"serp\",\"rvb\":\"EqsDChM1ODczNTEwOTUyMTg1NTQ5OTUzChMyMTQyNTM3MDUyMjA3MDQ0MjExChQxNjQyNDE3NjUzMzA0MjE1NzIxMgoUMTIxMzczNjk5ODEzODY1OTU2OTkKEzUzMzc2OTMxNzc2NDUyNzkxNzkKEzc1ODM0MTg4ODczNTI1Njk1OTkKFDEwNDI4MTAxMTcwMjk3MTg1MDg3ChIzNDQ1NjQxMDM3NzQzMjExMDgKEzU4MTQ5MDIyMTYyNzY3Mjc4NDMKEzk3MjQxNDI3MjU5NjA5OTY4NDEKEzQ1MjAzNzA1Njc3NTAwMTk4MDUKFDE4MTU2MzA5ODIwNzUwMDIxMDc2ChQxNTkwNjkwNTE1MjY5MzMxNTk4NwoUMTY3ODc3NzIxNTE1ODg3NDA5ODUKEzYyNzgyNjE5Nzg3MjY0NzA0MTgKFDE0MzgyMDExNjQxMDk2NjgwMzU2ChM1MDk3MzMwMjg0NDYwMzM2NzQ5ChQxMDk4NDU1NDM1MTI0MDk0Mzk5NgoTMTYyODgxNTE0ODA2Nzg4MjIzMwoTMTk5MDc0ODc3NjM3MDUwNzg4ORoVChM3NTgzNDE4ODg3MzUyNTY5NTk5WhM3NTgzNDE4ODg3MzUyNTY5NTk5apMXEgEwGAAiRRoxAAoqaGh3dmtibG92amlhYmpoYmhoVUM2ak0wUkZrcjRlU2t6VDVHeDBIT0F3EgIAEioQwg8PGg8_E-YEggQkAYAEKyqLARABGniB-Q_0_gL-APv8_xABCfsCHAABCvQCAgDq9_vyAv8BAPMKCwUKAAAA8Bb-_wQAAAD99_cC-v4AABAB9_wEAAAA_vP8DP0AAAAT-PL4_wEAAP_s9PUC_wAACPkC_P8AAAD2FfYE__8AAOcMAwwAAAAAGfkP_gABAAAgAC2O-ss7OBNACUhOUAIqhAIQABrwAX_4CQS9Cu_--PfuAP0DBQHVJAkA_wvqANEY9wDgEfIB6BXyAPrzxf8AGPb_vQ0JAP_o5gDm1AoAF-r__zHp-wD1AxEALfL8ADgQDAEJ8uYADP4N_-wNG_8D8OUAExPnAP0DLf8O-tIB7-TjABr9IQHnB_sCAvj_BP7w_wDpAggBB-3w_-0X8QLw8P8B1_8WAQP__fz8EPD_--YCBiri8f796gP8_gLtBRbo6QAI8wID7e_-_fDr9fsQFxn_1frp__kDEPXaBwQD-g8JAAv9AQDUFAP9EfcMAQwGBv4VAvz4CPv1A_kkEQDl-gD-BwLz-yAALatKTzs4E0AJSGFQAirPBxAAGsAHiQnyvu-ujrw9FtG874zWPXoIOT2KyRu9Pom5PZClKj1VxXG7_dKnPQmyFL1L_aE8WcBUvgSMjDkqz9c8FJRCPkZFHL1z6AC8DjEOvk0GkTxH6EK8Z2IKvlVh_TwwQj29Ro7bOxB3dT3uHXs70usFPWaDzLzVIgK9F0gQPRtFm73boky83GoZOvURWL0TfFi9C6cWvVVXtDyYCju8BGvBPRCYQbthHi29c-F2PAVK7zyCuYw8qUs2vtRWtrzV5I48BJIgPgaRWjoldLy83FV-vP3XPr3KILG6TszfPPV8Ej0hQyK9ByRhPDHQtTwApjG8qN7_PLMtrj2RQ0S8Iz3LvTjuuTzetqW8Xp0DPbvR5z24EBg8fJrTvbGiJj19XrG85XjLOwL73jye6N-8mQznPfxHoD1GlaG878ouPNgHgjvyiIC8IaQYvUUtzbygsWU8OeCpPfX7mT3gaAW8ie7JvaxsBL2cZNA8xEMTvT8Y3Txlm-W8LQnQPfxbXT303IK8MQnXPGgnnjxQ8Ym8xTVDPfhRDb4Jbyy7-ePuu1th-r2FAr47nakmvX2iIb2gPyE8V1gVPYtUeL2SEN27ZvogvRSv0r3B7JY7QqbGPR0wmTyDnN46mT6FvGKg67yg3pC7X6IwvJAtkL2QE6a7xJJ2O99vpD1cQMM6gbEduxZKC72x0rC7oYbPPaUX0juj6rK784DoOzp8Tb0AQKm7h-nSu_R4kDwo_RS7hHUNvYvYDL2_I3C7LBY6PQe5pr3ntTG5R9DzvAjoHTt-T0i55hdvPVWVDL3bYy85_uuRvWeHUz2cSPG4OWK9PdkK-TtBfoK5cuLpO3NBB70SmG65AEeMvfIHQ71pgFW5h-T_PO67_Tzynac5d9cdvPofmr1E8Uo5-5umPTCAED0kHXC49o15vQrxbTx8Ncw3dYWYvY8HUT24grI5xuChPcE4GL1S6UK5eB9MPaWv8TyXzwI5I6yMPfRsBr7PcKU5N0P9u9DKAj0L5EA5Xa44O4HznT2zGGK2A8zhPPHejL0kShQ5w9PrPGcm-L0iJCS4HEMgPUw4FL0asmk4oFDPvRXvhj3C0gI4T4B2uy7mZz2b9LQ4wvPau2JN5bwcBcS3QUfrvWxeVbzUEay3cRhxPa-6aTx8PDC5k4ycvCaxqr33Adu4WcCkPbOa7r3nF_83m0tbvZI8pz1tcIE47AO9O3zUD74X-ty4Iv_sPTUpBT7zflu4-k_tOux1wTyL7aC4naYqvc3deLx-6Lu34m1vPDVu-zzOSNc3IAA4E0AJSG1QASpzEAAaYFz3ADcXM_Uh0ALa6e0XFcT08M_wnSP_8fT_F0bh-DlJy8ryAQAnuQfTmgAAADHyCfnkAAl_Fs4TKtvfy-LK0RC0L-Ua-8H3EQuhCQP-IugUQuRGQwCxFr1KGvOvQwwKECAALeB7Fjs4E0AJSG9QAiqvBhAMGqAGAADgwQAAlMIAAChCAADwwQAAwEEAALjBAAAkQgAAIMEAAETCAACIwQAAgEEAAKjBAAAQQgAALMIAAITCAAAAQAAAHEIAAKBAAAC4QQAAEEEAAOBBAABQQQAAQMAAAIhBAABYwgAAAEAAAHDCAAA0QgAAnkIAANDBAABAwgAAMMEAANDBAABAQQAA8MEAABBCAAAkQgAAkEIAABTCAABAQAAAqMEAAARCAAAMQgAA0MEAABRCAADowQAAZEIAAODAAACCQgAAMMEAAMhBAABQwgAAwMEAAHDBAADIQQAAIEIAAEDBAABgwQAAmkIAAOhBAADgQAAAoMIAAODAAACKwgAABMIAAETCAAAAwAAAcMEAAJDBAAAAwAAAAAAAAABBAADQwgAANEIAAABAAAAIwgAAUMEAAARCAACUwgAAAMIAAKBAAACaQgAAQEEAAIDBAACIQQAAAEEAAGxCAACOQgAAoEEAADTCAABcwgAAcEIAAMDBAAAcQgAAQEEAACzCAACgwAAAIEIAAKhBAADGQgAAgMEAADBBAACgQAAAyMEAABzCAACYwQAAYMEAAGxCAADIQQAAhkIAAIhCAAC4wQAAgMEAAHRCAAAAwQAAAMEAAOBBAAD4wQAA4EAAAAzCAAAMwgAAvsIAADDCAABIwgAAAMEAAFTCAACWwgAAMMEAACDCAADowQAAcEEAAHBBAAAQQQAANEIAAITCAAA4QgAAeEIAAKjBAABAwQAACMIAAHBBAAAQQQAAgL8AABDCAABUQgAAFEIAAEDCAAAAQQAA4MEAAARCAAC4wQAAgMEAADxCAAAEwgAA0EEAAFDBAAAwwQAAmMEAAJTCAABYQgAA2MEAAPDBAADgwAAAaMIAAIDAAACoQQAAUMEAAMRCAADgQAAAAEIAANDBAAAQwgAAIEEAAPDBAABEwgAAkEEAAKLCAAAwwQAAXEIAAGxCAAAkwgAAyMEAAADBAABIwgAAwEEAAKjCAABAQQAABMIAAKhBAAAYQgAAgEIAAIDCAACgQgAAwMAAAOBAAABQQgAAgEAAABTCAAAAwQAAKMIgADgTQAlIdVABKo8CEAAagAIAAKC8AACYvQAARD4AAFC9AAAcPgAA2D0AAOC8AAAFvwAAUL0AANg9AABQPQAAXL4AAFC9AAAcPgAAcL0AAAy-AABUPgAAEL0AAJi9AACmPgAAfz8AAHC9AAAwvQAADL4AAGS-AACOvgAA6D0AAIi9AABAPAAAgj4AACw-AAAsPgAAqL0AAKA8AADoPQAAqD0AADQ-AACgvAAAPL4AAFS-AABUvgAARL4AAGQ-AACgPAAADD4AACy-AABAvAAAmL0AAI6-AABMvgAA6L0AAAS-AADoPQAA6D0AAJ6-AACgPAAACz8AABC9AADovQAAmD0AAKi9AAAEPgAALD4AAIC7IAA4E0AJSHxQASqPAhABGoACAAC4vQAAoDwAAKC8AAAvvwAAyL0AAIC7AADGPgAA4LwAABw-AACYPQAAcD0AAJi9AAAUvgAAyL0AAJg9AACgPAAAML0AAB8_AAA8vgAA5j4AABS-AABcvgAAgr4AAIi9AABAvAAAyL0AADA9AAAwvQAAqD0AAPg9AACAuwAAmD0AACS-AAAMvgAARD4AAOA8AADgvAAAED0AAHS-AAAsPgAA-D0AAOC8AAAwPQAA4DwAAGy-AACgvAAAf78AAIA7AAAwvQAAbL4AAIi9AACYPQAAMD0AABS-AACCPgAA2D0AAKC8AABAvAAAQLwAAOA8AACgPAAABL4AADC9AADYPSAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=C0KeMyZF0Sk","parent-reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["7583418887352569599"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"10428101170297185087":{"videoId":"10428101170297185087","docid":"34-3-9-Z973450EEDCFB8590","description":"Solve by Laplace Transform y'+y=f(t),y(0)=5, f(t) = 0 and 3cost If you have any questions related to the math send us by email or by comment section at mathexpertshub@gmail.com Subscribe to us at...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1532931/0972b8f34e0922e4bfadb8a5bf2e3f73/564x318_1"},"target":"_self","position":"7","reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","isAdultDoc":false,"relatedParams":{"text":"Solve by Laplace Transform y'+y=f(t), y(0)=5, f(t) = 0 and 3cost","related_orig_text":"Y.Y.F.","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Y.Y.F.\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=_8xTKsLwQcY\",\"src\":\"serp\",\"rvb\":\"EqsDChM1ODczNTEwOTUyMTg1NTQ5OTUzChMyMTQyNTM3MDUyMjA3MDQ0MjExChQxNjQyNDE3NjUzMzA0MjE1NzIxMgoUMTIxMzczNjk5ODEzODY1OTU2OTkKEzUzMzc2OTMxNzc2NDUyNzkxNzkKEzc1ODM0MTg4ODczNTI1Njk1OTkKFDEwNDI4MTAxMTcwMjk3MTg1MDg3ChIzNDQ1NjQxMDM3NzQzMjExMDgKEzU4MTQ5MDIyMTYyNzY3Mjc4NDMKEzk3MjQxNDI3MjU5NjA5OTY4NDEKEzQ1MjAzNzA1Njc3NTAwMTk4MDUKFDE4MTU2MzA5ODIwNzUwMDIxMDc2ChQxNTkwNjkwNTE1MjY5MzMxNTk4NwoUMTY3ODc3NzIxNTE1ODg3NDA5ODUKEzYyNzgyNjE5Nzg3MjY0NzA0MTgKFDE0MzgyMDExNjQxMDk2NjgwMzU2ChM1MDk3MzMwMjg0NDYwMzM2NzQ5ChQxMDk4NDU1NDM1MTI0MDk0Mzk5NgoTMTYyODgxNTE0ODA2Nzg4MjIzMwoTMTk5MDc0ODc3NjM3MDUwNzg4ORoWChQxMDQyODEwMTE3MDI5NzE4NTA4N1oUMTA0MjgxMDExNzAyOTcxODUwODdqrw0SATAYACJFGjEACipoaGFwd2NiZHdoZGFoeW9iaGhVQ1FONUp5SWZfb0dPOTJENnFFUjBxVkESAgASKhDCDw8aDz8T3QaCBCQBgAQrKosBEAEaeIH2-_v7-wUA9f4KDAIG_QET_f0A9gEBAPP7_fwHAQAAB_sIAfsBAADrBvr2AwAAAAcGAwX6_gEACvYAAfoAAAD-9fwL_gAAAAkH9Pb_AQAA-AH8AQP_AAAA_wT6_wAAAPwIAQD8_wAA7f4FDAAAAAAA-vz5AAAAACAALVmR4js4E0AJSE5QAipzEAAaYO0UABQGKfXyFAby-Q7yCAf6Be3l3hQAAfkADhDqAhUZ8-IFBQAN9xvp1QAAABAdDBb9AAMxG_XbCfIcA-vgERAJfxMO9vv97_PU-vQWCw0F6wAUAgDq-BH1FPD1HgkOGCAALcbrlDs4E0AJSG9QAiqvBhAMGqAGAAAIQgAAQMEAALxCAAAgwgAAUEEAAEDBAAAMQgAAIMEAAPDBAAD4QQAAWEIAACxCAABgwQAAIEEAAKBCAAAkQgAAQMEAAIDBAACgQQAAiEEAACBCAAAAwQAAmMEAADRCAADAQQAAMMEAAAjCAADgwQAAHEIAAIC_AADIwQAABEIAAATCAADAQAAA8MEAAChCAACwQQAAWEIAABBCAABgwQAAIEEAAIBAAACAPwAA0sIAABBCAABowgAAgD8AAGxCAACgQQAANEIAADjCAADAQAAAMMEAABBCAAAIQgAAREIAAMDCAAAAQgAAiEEAAIpCAAAAwgAAQMIAAKjBAAAswgAAAEEAAIbCAAAgQQAAoMEAAMjBAAAgwQAACEIAADxCAACAwQAADEIAAIDCAACgwAAADMIAABDBAAB0wgAAMEEAAMBAAADQQQAAoMEAAADAAABAwQAAVEIAAITCAABAQQAAiEEAAPjBAABUwgAATEIAAAzCAAAAwAAA8EEAAEjCAAAQwQAAwEEAADxCAADIQQAAyMEAAJhCAABIQgAAAEEAAGzCAAA4QgAAIMIAAIBAAACYwQAAwEEAAEBCAADgQAAASMIAADBBAAAwwQAAzEIAAFBBAADwwQAAXMIAAGjCAAD4wQAAVMIAADxCAADgQAAAqMEAABBBAAAMwgAAFMIAALDBAAAAQQAAuMEAAAjCAAAgQgAA2EIAAKDAAABAQgAA2MEAAMjBAADYQQAARMIAACBCAAAcwgAAZEIAADzCAABkQgAAbEIAAIjCAAAUQgAAgMEAAHBBAADIwQAAcEIAAHjCAAAIwgAAyEEAAJBBAABQwgAAGMIAAJzCAAAUQgAABMIAAOhBAAAoQgAAXMIAAODAAACYQQAANMIAAHBCAAAUQgAAPMIAAJTCAACAvwAAhEIAADBBAAC8wgAAQMAAAGBBAADgwAAAHEIAAGBBAACOwgAAUMIAAHDBAAAQwQAAoMAAAI7CAAAQwgAAKMIAAEDCAABAwAAAAEIAAIBAAADgQQAAoEAAAIA_AABIQgAASMIAAPhBAACAQAAAwMAgADgTQAlIdVABKo8CEAAagAIAAKi9AACgPAAAPD4AAOA8AACoPQAADD4AABC9AADGvgAAqD0AABw-AADIPQAAcL0AACw-AAAkPgAAyL0AAFC9AABwPQAAoDwAAKC8AACyPgAAfz8AAHA9AABwPQAAcD0AAJa-AABEvgAAcD0AAFA9AABQvQAAuD0AADA9AACYPQAA6L0AAIg9AADIPQAA2L0AACQ-AAAUvgAAPL4AAEC8AACSvgAAuL0AAAQ-AACAuwAA2L0AAIC7AAAwPQAAcD0AADy-AACGvgAAgDsAADA9AABMPgAAkj4AAI6-AAAQvQAAFT8AAKC8AACgPAAAoDwAAJi9AAAQPQAAED0AADC9IAA4E0AJSHxQASqPAhABGoACAAA8vgAA4DwAALi9AAATvwAAHD4AAAQ-AACoPQAAMD0AABy-AACaPgAAoLwAAHC9AACIvQAAkr4AAOC8AACgvAAABL4AADk_AAAQvQAATD4AAFC9AAAwvQAA6D0AABA9AACIvQAA6D0AALi9AADgPAAA2D0AAAy-AABQPQAAQDwAAIi9AAAEvgAA4LwAANi9AAA8PgAAND4AAGy-AAAwvQAAuD0AAFA9AAAUPgAAPL4AAJg9AACAOwAAf78AAEC8AAAEPgAAcD0AAOg9AAAkvgAAij4AAKC8AABMPgAAcL0AAEA8AACYvQAALL4AAKg9AACAOwAAgDsAAHC9AAAQPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=_8xTKsLwQcY","parent-reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["10428101170297185087"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"344564103774321108":{"videoId":"344564103774321108","docid":"34-6-0-ZC824F5ADA68DC6CD","description":"Join this channel to get access to perks:→ https://bit.ly/3cBgfR1 My merch → https://teespring.com/stores/sybermat... Follow me → / sybermath Subscribe → https://www.youtube.com/SyberMath?sub...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3382066/4b7dd3ab3f3d8a90aeeda467eb34b64e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/93TjKwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","isAdultDoc":false,"relatedParams":{"text":"Solving the Differential Equation y''=(y')^2","related_orig_text":"Y.Y.F.","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Y.Y.F.\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=sZZq72jX7Ew\",\"src\":\"serp\",\"rvb\":\"EqsDChM1ODczNTEwOTUyMTg1NTQ5OTUzChMyMTQyNTM3MDUyMjA3MDQ0MjExChQxNjQyNDE3NjUzMzA0MjE1NzIxMgoUMTIxMzczNjk5ODEzODY1OTU2OTkKEzUzMzc2OTMxNzc2NDUyNzkxNzkKEzc1ODM0MTg4ODczNTI1Njk1OTkKFDEwNDI4MTAxMTcwMjk3MTg1MDg3ChIzNDQ1NjQxMDM3NzQzMjExMDgKEzU4MTQ5MDIyMTYyNzY3Mjc4NDMKEzk3MjQxNDI3MjU5NjA5OTY4NDEKEzQ1MjAzNzA1Njc3NTAwMTk4MDUKFDE4MTU2MzA5ODIwNzUwMDIxMDc2ChQxNTkwNjkwNTE1MjY5MzMxNTk4NwoUMTY3ODc3NzIxNTE1ODg3NDA5ODUKEzYyNzgyNjE5Nzg3MjY0NzA0MTgKFDE0MzgyMDExNjQxMDk2NjgwMzU2ChM1MDk3MzMwMjg0NDYwMzM2NzQ5ChQxMDk4NDU1NDM1MTI0MDk0Mzk5NgoTMTYyODgxNTE0ODA2Nzg4MjIzMwoTMTk5MDc0ODc3NjM3MDUwNzg4ORoUChIzNDQ1NjQxMDM3NzQzMjExMDhaEjM0NDU2NDEwMzc3NDMyMTEwOGqHFxIBMBgAIkQaMAAKKWhodmFrc2Zkd3hncWNxemhoVUNXNGN6b2t2NDBKWVItdzd1NmFYWjNnEgIAESoQwg8PGg8_E64EggQkAYAEKyqLARABGniB_Qj69gT7AAD7Bgn3CfwCHQABCvQCAgD38wHxAwT-AOwABf4OAAAA7xf-_wUAAAAQ-_0M9v8AABcE8wD0AAAACvL2DPoAAAAU7_AG_wEAAPz6_fYC_wAABPMG9v8AAADxDAIBBfn3BfES8QkAAAAAEf0KBQAAAAAgAC3vosU7OBNACUhOUAIqhAIQABrwAX__HgDX9aUByRn2Afzv5gHcBjT_FTcCANDbzwDdAOgB_RvyAO8m8f_HT_8BninOAPv3xf7s19EAQ9f7AB3aAAHR7_YBPQfeAT8SGgIdEP4A2_wW_gXl8v8a773-CQ3K_gjMH_4l7_r76gS5AjcyNgLh5hwAC_Qo_O-9Cf_W3f8EK_HyAfEJFw3-7BkA0wUnAgLUCQkK5xX57gzoBQEPDPrWzwX5BB3gBgoMBBEYMgr6i8D5BRS_CAvmKCH-4RbbCdLwNAboMgoAAQoF8hoD3wb55OAACtjmAffNBQkF1RwCMt738SEV_vH9AOUI9w317yAALTgcAjs4E0AJSGFQAirPBxAAGsAHTz7Fvn7Y3DwxxrA7qfcUvEQlw7t3Lsy8XyV_vRSvMjwZopK79rZJPpJSir1RVw09NigQvXRtiT3D_Ms7_b10PpJUS70Dsew8cT1avucWvz2FTKi8F6GjvRn0rzzTBSs85RVeveuIqDySi1a8C7-qPT8KjbzSacI8w_hEvEyJRD0tWVq9vHzGPG4OH7wiDXi9t3-FvefT2bzQj9A6LlmlPWNCTLwfCFo8XBBgPQCXVr2OUai84R-7vQFAhLw5tO28L-LWPM7cqD0wx6E86_uFvT5oTL2HOxE8K_vuvJnZIj1jrB88lVKGPSMxwTy7ZWK82MIHPUTHmb3yO7K8L4byvXSQfLz9Iaw8F5iKPdlCzjsLEYs8UMPXvcSSdz1rjM46ZmUePAkCnrtWFoG7LP6lPOdAxT2paKw81IXzPLrSVzwziUG6CJvwvP9jHD0XDZk8W5WUPeoOqL0wMIa884erPYhgAbwS7r45rKbQvIDhi7yB6ZO7iTMVvZCrlz2F8vg7U7CGPLElNb32RaE7BSOlPdYCO75J5Zo6V3s4vS-H_b0qoGY6PRVGPeprpzx6BkO8Q6kdPh9q273Emqk5LzKiOxQU9bwY9os7shHIvL1KSL3t9pO6lSSEvZxEnr31Ll67KSDNvVyIGzxm7sa7eJGyu09BGT2iROy7kaBTvN8mrb0W7Z66GpyNPeTHDj2eke-7mDIAPhZ_QD0tP7W3m6a0PLckt71rAEK70dWRvfU2rLwiJ-E62rrlvMA1sb1SWQ667q8OPp8Skb1-0JQ5FcpCPMqxaz2bzOo5bFpOvahOLDyoqo45EyOQPY-zn70Kfrg376sSPc6mA74Woda39eC0PcnqczvWpCa4GlSWveSldj3DJLU5Ux6SvUobyL3hc5s31rXsPJYCGDybw4A5cD1PPbhOLb1PJQQ5vo4TO574ID2VO024_cYSPRma4bzZlXq4mLzmPJWi8LvKJbo4Wq-DPQGPw72m0Vo5kR-7vKPuXj00e-O2tSE1vC_L8LpcRJ643JQcPU6ilD26wIc3rWiYvG6kbL0_UzA4zF2LPJwOrjx13wa4vY_jvThlzj04c5E4gXvePLDEqDw5FCS36g-DvbtNbjzh06C4h-mxPNfqAT3O9KQ2weMrPtylaLwHiXS5q98WvQ37Hb6jvP64Hip4OyUE670jv2c4BxSguskgtz3C15q33uhePXjlhL1BUrS4yvRwPSLhKz7xy4o48LI1vVzMzz0MRgq5pyUGvs8Zi7v0jjQ2vXbEvCYuET2D2yU4IAA4E0AJSG1QASpzEAAaYCL4ACVKM-k8-Av79uMd-cbT5trr0Qr_7L3_Pgbn5TsYtcjwxwBh0QLmlAAAADu_FwwBAEB_BswacQgZ4_TsligCeOb5He7RRgXu51gwKeA7DvHbYgC1NLJTAheZKeDzOCAALdnpBzs4E0AJSG9QAiqvBhAMGqAGAADAQAAAWMIAALhBAADowQAAcEEAAAAAAACCQgAAgL8AAIrCAACAPwAAVEIAAHDBAACAwQAAIMIAAODBAABAwQAAaEIAAARCAAAAQQAA8MEAACBCAAAAwQAA-MEAAATCAACqwgAAHEIAAJTCAACgQAAALEIAAFDBAADYwQAAQMAAAGzCAACIQgAAUMIAAADAAAA0QgAAOEIAAMhBAABkQgAAAEEAAGBBAACgQgAALMIAAIA_AADowQAAmkIAAEBCAABQwQAA-MEAAIA_AABkwgAAPMIAANjBAADAwAAAuEEAAMDAAABAQAAAYEIAAGxCAABAQQAACMIAAATCAAAcwgAA0MEAAL7CAACoQQAAUMEAAJjBAACAQQAAkEEAAGBBAACwwgAAREIAAEDAAAAIwgAA2MEAAKJCAABgwQAA4MAAADDBAADCQgAAyMEAAIDBAACAvwAA4EEAAIDAAAAkQgAA6EEAABDBAABUwgAAVEIAAMjBAAAIwgAAwEEAAIDBAABUwgAAgEEAAPhBAACCQgAAOMIAAEBBAAAUwgAALEIAAHTCAABAQAAAIMIAAHhCAACAQAAAjkIAAERCAACAwAAAQMAAAOhBAACgQAAAcEEAAOBBAACMwgAAkkIAAMBBAAAwQQAA0MEAAKjBAACGwgAANMIAAEzCAAAswgAABEIAAGjCAADoQQAA6MEAAIRCAACQQQAAeEIAAOjBAABQQQAAqEEAAIDAAADAQAAAYMEAAHDBAABQQgAAIEIAABDBAACOQgAAKEIAAFDBAAAEQgAAIEEAAChCAADgwAAA4MAAAIBAAACAwgAAsEEAAOBBAAAswgAAgEAAAJLCAAAcwgAAXMIAAMjBAABAwQAAIMIAAGBBAAAAQQAAMMEAAKRCAADwQQAADEIAAPhBAAAgwQAA8EEAAODBAAB0wgAAwEAAAJDBAABgwQAAIMEAALxCAADywgAAgEAAADDBAAC4QQAAAEAAAIDBAACAwAAAgD8AAPDBAABwQQAAYEIAAIBAAABEQgAAoMAAAFDCAAC6QgAAcEEAAJjBAACAQQAA0MEgADgTQAlIdVABKo8CEAAagAIAAIg9AAAwvQAA6D0AALi9AAAMPgAAqj4AAIg9AAAbvwAAEL0AAFA9AAAwPQAAdL4AAOA8AAA0PgAA2L0AAAy-AACePgAAgLsAAHA9AACqPgAAfz8AAPi9AAB0PgAA4LwAAFy-AAA0vgAA-D0AADA9AACgPAAAXD4AAI4-AAAMPgAAML0AAOC8AACAuwAABD4AAOg9AAAwPQAAxr4AAGS-AAAkvgAAgDsAADw-AACAOwAAgLsAAKi9AADYPQAAmL0AAES-AADIvQAA2L0AAEy-AABcPgAAZD4AAKi9AABQPQAABz8AALg9AAB8vgAA6D0AAFC9AABMPgAARD4AAIA7IAA4E0AJSHxQASqPAhABGoACAADovQAAMD0AAKA8AABDvwAAyL0AAOC8AAC2PgAA2D0AABw-AAAQPQAALD4AAAy-AAD4vQAAiL0AAFA9AABAPAAAMD0AABE_AAAMvgAAxj4AALi9AAAsvgAABL4AABS-AABQPQAAML0AAEC8AACAuwAADD4AAJg9AACAOwAAiD0AACy-AABQvQAAJD4AAIi9AACAOwAAuD0AAEy-AADYPQAALD4AALi9AACgPAAAQDwAAGy-AAAwPQAAf78AADw-AABQvQAA6L0AAMi9AAAEPgAAiD0AAKC8AACoPQAA6D0AAOC8AABQvQAA-D0AAKi9AABAvAAAsr4AAIi9AABcPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=sZZq72jX7Ew","parent-reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1440,"cratio":1.33333,"dups":["344564103774321108"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"319108369"},"5814902216276727843":{"videoId":"5814902216276727843","docid":"34-0-3-Z34DA51467ECFBAF0","description":"App or You can Whatsapp us at - 8400400400 Link - https://doubtnut.app.link/2um0jr7Joeb Join our courses to improve your performance and Clear your concepts from basic for Class 6-12 School and...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2976012/92bddb91587f30d508b0470fb85b237b/564x318_1"},"target":"_self","position":"9","reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","isAdultDoc":false,"relatedParams":{"text":"Iff(x) is a differentiable function for all x gt 0 and lim_(y to x)(y^(2) f(x)-x^(2) f(y))/(y-x)=2...","related_orig_text":"Y.Y.F.","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Y.Y.F.\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=LV5UIe8GIOA\",\"src\":\"serp\",\"rvb\":\"EqsDChM1ODczNTEwOTUyMTg1NTQ5OTUzChMyMTQyNTM3MDUyMjA3MDQ0MjExChQxNjQyNDE3NjUzMzA0MjE1NzIxMgoUMTIxMzczNjk5ODEzODY1OTU2OTkKEzUzMzc2OTMxNzc2NDUyNzkxNzkKEzc1ODM0MTg4ODczNTI1Njk1OTkKFDEwNDI4MTAxMTcwMjk3MTg1MDg3ChIzNDQ1NjQxMDM3NzQzMjExMDgKEzU4MTQ5MDIyMTYyNzY3Mjc4NDMKEzk3MjQxNDI3MjU5NjA5OTY4NDEKEzQ1MjAzNzA1Njc3NTAwMTk4MDUKFDE4MTU2MzA5ODIwNzUwMDIxMDc2ChQxNTkwNjkwNTE1MjY5MzMxNTk4NwoUMTY3ODc3NzIxNTE1ODg3NDA5ODUKEzYyNzgyNjE5Nzg3MjY0NzA0MTgKFDE0MzgyMDExNjQxMDk2NjgwMzU2ChM1MDk3MzMwMjg0NDYwMzM2NzQ5ChQxMDk4NDU1NDM1MTI0MDk0Mzk5NgoTMTYyODgxNTE0ODA2Nzg4MjIzMwoTMTk5MDc0ODc3NjM3MDUwNzg4ORoVChM1ODE0OTAyMjE2Mjc2NzI3ODQzWhM1ODE0OTAyMjE2Mjc2NzI3ODQzaq8NEgEwGAAiRRoxAAoqaGh4Y2xwaGtieXhscnltZGhoVUNjdjdwc3BHSG1NN0FPeXd1TE0xdWZBEgIAEioQwg8PGg8_E-4CggQkAYAEKyqLARABGniB9wT6_voGAAD5_wP7Bv4CAPz3_fj-_QD08fr_BQL_APYGBQEBAAAA9gn8-gQAAAAFAwP8_v4BAAwA_QP7AAAAA_74-fcAAAALDfAC_wAAAP37_fcCAAAABQP69_8AAAAABAP3_P8AAPL6AQIAAAAAAAAI9_8AAAAgAC1aVOQ7OBNACUhOUAIqcxAAGmAlEgA7DyzE4yQN5wH77gH78RX-3RAF_9MAADcVzuTyHeW8Hx__Iub10a8AAAAwHw0SGAAaYx4Q2Tb6-v0DgtkHIX_3IegPFRLf5xRe6BcG7_PWDAsApxTzIhDzFCsj-lMgAC1UGi87OBNACUhvUAIqrwYQDBqgBgAAhEIAAODAAACkQgAAdMIAAADAAACAvwAASEIAAEDAAAAcwgAA4MEAAARCAADYwQAAgMEAAKjBAAAIwgAAUEEAAKhBAADMwgAAgkIAAADAAAAowgAAQEAAAL7CAABIQgAAOMIAACjCAAAMwgAAwEAAABBBAADAQAAAWMIAABhCAABQwgAAgMAAAGDCAACAvwAAgL8AABRCAABowgAACEIAAADCAAAAwAAAIMEAAETCAABUQgAAiMEAAKhBAACIQQAA4EEAAGBBAAC4wQAAcMIAAADAAABAQgAAVEIAAARCAABgwgAAMMEAAGBBAACoQQAAIEEAAODBAACQwgAA-MEAAPBBAACqwgAAIMIAAHzCAAAQwgAATMIAABRCAAAgQgAACMIAACDBAAAAwQAAFEIAAHjCAAAQwQAAwEAAAFBBAADAwAAAyEEAAFDBAAAwwQAAHMIAAFxCAAAAQgAAMMEAAFxCAACIQQAAUEEAAPBBAABMwgAAcEIAAFBCAAA4wgAADMIAAKBBAAAAwAAAikIAAEjCAABEwgAAoEEAAPjBAACgwAAAgD8AAODAAACIQQAA6EEAAKBCAACGQgAAsEEAAPDBAABwQQAAAMIAAJpCAAAQQgAAoMEAAODAAACowQAAPMIAAIbCAABgQQAA8MEAAODBAADIwQAAAMEAADDBAAAMwgAAQEEAAADCAACAwgAAqEEAAABAAABwwgAASEIAAADAAACcQgAAUMEAAPjBAABAwQAAGMIAAKBBAABYwgAAAAAAAFRCAABgQQAAyEEAAMDBAAAgQQAAHMIAAAxCAACUQgAAoEIAAJBCAAAgwQAAisIAAHDBAAAowgAACMIAAI7CAADoQQAAYEIAAEDAAAB0QgAAAEAAAPjBAACgQgAAkkIAABzCAACIwQAAUMEAALjBAACOwgAA2MEAANBBAAAgwQAAgMAAAIRCAABAwAAAdMIAABDBAAAgQQAAlMIAAOBBAAD4QQAASMIAAOjBAACIwQAAkEEAAPhBAADgQQAAYEEAAAxCAACAPwAAUEIAAODBAABgQQAAAEIAAAAAIAA4E0AJSHVQASqPAhAAGoACAADYvQAAbL4AAJo-AAD4vQAAJL4AAHw-AACIPQAA5r4AADQ-AADIvQAAcD0AAI6-AAAQPQAAlj4AAGy-AABwPQAARD4AAIA7AACoPQAAqj4AAH8_AACIvQAA-L0AAKA8AACGvgAAML0AAFA9AACAOwAAJD4AAMg9AACIPQAAcD0AADC9AACIvQAAyD0AAAy-AACIPQAAcL0AACS-AACgPAAARL4AAIA7AABkPgAAyL0AAJi9AAD4vQAAED0AAEA8AAAQPQAAcL0AAOg9AACCPgAAZD4AACQ-AAC4vQAA4LwAACU_AADYPQAA-D0AAKg9AACYvQAA2L0AAJg9AACgPCAAOBNACUh8UAEqjwIQARqAAgAAmL0AANi9AADIvQAAKb8AAFC9AAAQPQAADD4AAPg9AAAkvgAAfD4AAFQ-AAAwvQAAQLwAACy-AACgPAAA4LwAAJi9AAAzPwAAiL0AAGw-AAC4PQAAFL4AAOA8AACYvQAAUD0AACw-AADYvQAAUD0AAEw-AACgPAAAQLwAAKC8AAAUvgAAbL4AAFA9AAAQvQAAiD0AAJg9AABEvgAAmL0AACw-AADIvQAAyD0AAJi9AAC4PQAA4DwAAH-_AABwPQAA4DwAAPi9AADgvAAAEL0AAJg9AABwvQAA4DwAAKA8AABAvAAAQLwAAIg9AADgPAAAuD0AABy-AACgvAAAUD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=LV5UIe8GIOA","parent-reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["5814902216276727843"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"9724142725960996841":{"videoId":"9724142725960996841","docid":"34-10-5-Z5E5D664A0705880F","description":"Help me create more free content! =) / mathable Merch :v - https://teespring.com/stores/papaflammy https://www.amazon.com/shop/flammable... https://shop.spreadshirt.de/papaflammy Become a Member...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4412806/54a8d39a600de6900158a355f21903d3/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/RcnPFwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","isAdultDoc":false,"relatedParams":{"text":"Differentiating x^y=y^x","related_orig_text":"Y.Y.F.","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Y.Y.F.\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=t38MnYb6MdU\",\"src\":\"serp\",\"rvb\":\"EqsDChM1ODczNTEwOTUyMTg1NTQ5OTUzChMyMTQyNTM3MDUyMjA3MDQ0MjExChQxNjQyNDE3NjUzMzA0MjE1NzIxMgoUMTIxMzczNjk5ODEzODY1OTU2OTkKEzUzMzc2OTMxNzc2NDUyNzkxNzkKEzc1ODM0MTg4ODczNTI1Njk1OTkKFDEwNDI4MTAxMTcwMjk3MTg1MDg3ChIzNDQ1NjQxMDM3NzQzMjExMDgKEzU4MTQ5MDIyMTYyNzY3Mjc4NDMKEzk3MjQxNDI3MjU5NjA5OTY4NDEKEzQ1MjAzNzA1Njc3NTAwMTk4MDUKFDE4MTU2MzA5ODIwNzUwMDIxMDc2ChQxNTkwNjkwNTE1MjY5MzMxNTk4NwoUMTY3ODc3NzIxNTE1ODg3NDA5ODUKEzYyNzgyNjE5Nzg3MjY0NzA0MTgKFDE0MzgyMDExNjQxMDk2NjgwMzU2ChM1MDk3MzMwMjg0NDYwMzM2NzQ5ChQxMDk4NDU1NDM1MTI0MDk0Mzk5NgoTMTYyODgxNTE0ODA2Nzg4MjIzMwoTMTk5MDc0ODc3NjM3MDUwNzg4ORoVChM5NzI0MTQyNzI1OTYwOTk2ODQxWhM5NzI0MTQyNzI1OTYwOTk2ODQxaogXEgEwGAAiRRoxAAoqaGhycGJ5YmhmYmJ4emd1YmhoVUN0QUlzMVZDUXJ5bWxBbnczbUdvbmh3EgIAEioQwg8PGg8_E5cEggQkAYAEKyqLARABGniB-wQBAv4DABn3_AX9CP8B-_b9Bvr-_QDy-_38BwEAAO0JAgb7AAAA9Qr8-QQAAAAFCg0EAP0BAA0CBv39AAAA-O_1Bv0AAAAN_-0B_wEAAPT7_vwDAAAABQgB8v8AAAD6Dvz7_wAAAPL6AQIAAAAAAAAI9_8AAAAgAC2ddds7OBNACUhOUAIqhAIQABrwAX_0Nf6--9__rSLzAAQwGwHl50wACjvuAKzk7__pB-4B1f4bANnj8QAVFdYAqQkB_9LCrgLS3-gBDt8C_x_XAAEc8BEAKewFATTgRgI34wr_wCgi_ffu-gAGAPIEJEUQ_f7eMv827wID7QbYAi36OQEWJB__CR_z_9bmHwXizgsE3fPP_OcD_gXs1f_4_hQlAya-_f7f7fP1yQfeAyek8gUSzQ_7B130_Qvn4goG-Oj4uuD-B-sI_QQiTxkH9xvQ_BjzJ_Dv2QLry9f_CA0O9Pfs-9jx9sTxEikJFfTv-SQF76UAAs4x_AX9AeMJ2Ary6CAALU178To4E0AJSGFQAirPBxAAGsAHuRwDv6G_q7uac_i79QoPPBo25ztVPU-95sSiu04Tkbw5tK28MzIYPhA0cL18PcQ8g6fwvVpiijxTgB49xVWFPlQwb72bfyq8GYGivUC1uz3hpF-9vu-5vdaPTT1BFr08XsUaPGxuljz8LOC8-tXcPTd-cjyroBY8qarIu7JdJr1fwQy92dm2PdxGw70Lcba8fkSyvW3bwTyfl2W8GkEZPRRBnDzI9Ua79WItPVlUnzxxu-E7dwi9vfgSbz294xS9D_yOPfyMKz3fIPU8ZftVvZu8krxpRvW83wkMvc8pUDm2jh68WPMtvHURNT164U68BpYNPSDKPLwkZHs8YaWKvnOcWzxVBO47CKmAOSVHFb1CmFs8HT3evb7ADD67CAu6sTgXPSoLNT3Ay8y84N4wPd_wzDwQWD06wSooPaXrU72kUmy8mtKFPTcvEz1BCwk8slW4PMUvhrzvEge8sgN4POujuLwNz4G8qBSwvSZjJr1Jewu8LY-aPIZ7wDw9Eqs74YARvWMxoLwnJwO832bGPTm1872HHxg8LvIdvG8umb3Ny367ajYNPJ97Kj0xyW285CxMPupXj70DDIU7Ff0hPFKe2b3eIYW81a80PUFQybyVfgS8nv69PBkM5LwIoAG8v2unuzrDuTzWNX-87O-mPVpNsj1Pc6a58Z5jvV12jr2J1ca5FHkSPStaLz0k-xS7LYuTPZ6vHj2gog86FuuaPRGr_71s1wG6nGOavfX1XL1u4Sk6c1ZavUcQeDvauV07lEC0PeDNZL3ih2o5WZNdPFhS8jtzYJy6c_QIvnGpr7xNUMi5IojzPLWeq7yyxhQ5FJ2LvYl64b3GJ3A5pe8cPFZfwjwFWLu6NplsvRLzUT3PR245p0fJvJsTxb0DArM4MYMMvZeGBj2CmL66ioJPvJorfj1EZbE4LWEIvS2dir3opDC5SKcOPVYYMb00ehS3JCNsPcBJKru8BXA4w4AlPOeOjr3DZnI5lUFavBJpmzwhNbA4F4V4PSe85D3ojjK3bZMFPYgIKT0_9Qm5GuflPF0Pa724sI03EoesPVXN-rkPHPe1opOqvVenxD29NqA4S-ofvX6HJz2jdhI4llJhPHoQDLyWDMY4qh9FvWPQDTuECAU4pdO_Pe-sfb2gLA65k4ycvCaxqr33Adu4zC-evMoSwrzZIXE3hs2LvQiw6D1Us5Y4SfeOPK1QxL1znPK4Iv_sPTUpBT7zflu4BixZvTtSP7t4PCa4pyUGvs8Zi7v0jjQ2zmYavQ_uzryQJD-3IAA4E0AJSG1QASpzEAAaYA7tADkEFwPqEhLv5MES-ADSHdX91hUA2wL_Fhb49RQU2dMhDv8a2RrQtAAAACYSARYEACZZ5_3oOwzt2Ouv1gQXf-j7FhTrFgHcwTL4APol2gANRwDDJd4tNDHhKSjgSSAALX7bODs4E0AJSG9QAiqvBhAMGqAGAAAAQgAALMIAAP5CAABQwgAAgEIAACBBAAAAQgAAUMEAAFTCAAAAQAAAyMEAAIBBAAAUQgAACMIAAIDAAAD4QQAAQEAAANDBAABkQgAAUMEAAJhBAABQQQAAWMIAADxCAAAMwgAAiEEAAMTCAAAAwAAATEIAABDBAACowQAAqEEAALjBAADYwQAAYMIAABxCAAAEQgAAHEIAAADAAACgQAAASMIAALDBAABAQQAAZMIAADRCAACgwAAA-EEAABBCAACOQgAAgD8AAILCAABAQAAAsMEAADBBAADQQQAAoEAAABjCAAAYQgAAOEIAAFhCAABMQgAABMIAACDBAACCwgAA2MEAAOzCAACUwgAAEMIAAKDBAAAkwgAAqEEAALhBAAB4wgAAkkIAACTCAACowQAAkMEAAKDAAAAAwgAAgD8AAMBBAACCQgAAMMEAAJDBAACYQQAA6EEAAJDBAAAEQgAA0EEAADBBAADAwgAAhEIAAEBAAADgwAAAjEIAAMjBAADIwQAA4EEAAHhCAAAAwAAAUMIAAFBBAADoQQAAmEEAAAzCAABwwQAA0EEAABBCAACYQQAAgEIAAAhCAACAQQAAUMIAAPjBAABQwgAAVEIAALhBAAAQwgAAYMEAAJDBAACAwQAAPMIAAKDAAACwQQAAAAAAAKjCAAAAAAAAgEEAAIjBAAAAwQAAIMEAAKjBAABYwgAAIEIAALDBAABkQgAABEIAADzCAABQQQAAuMEAABzCAACIwQAAhkIAAILCAAAEQgAABEIAALDBAAAwQgAADMIAAIDAAADgQAAAmEEAACDBAACAvwAAgD8AAFBBAAAAwgAABMIAAGDCAACwwQAA4MAAAOBBAAA0wgAAVMIAACDBAACSQgAAWMIAAIBCAABsQgAAMEEAAIhBAACgQAAA6EEAAMbCAABMwgAAAEEAANDBAAAAwQAAAEAAAGBBAACcwgAANMIAAGDBAACQwgAAkEEAAIzCAAAIQgAAYMEAAEBAAABsQgAAoEAAANDBAAAIQgAA0EEAAJDBAABoQgAADEIAADjCAAA0QgAAsMEgADgTQAlIdVABKo8CEAAagAIAAIi9AAAkvgAAkj4AALi9AAAcvgAAoj4AAKg9AADSvgAAgDsAAEA8AADIPQAAJL4AADA9AABUPgAALL4AAKC8AAC6PgAAML0AAIA7AACSPgAAfz8AAIi9AACovQAAQDwAAJa-AABkvgAAgDsAAAS-AABAPAAAfD4AAAw-AABQPQAAqL0AADC9AABAvAAA2L0AACw-AACIvQAAdL4AADS-AADYvQAABL4AAEw-AACIvQAALD4AADC9AAAQPQAAUL0AAES-AACCvgAAgDsAAFC9AAA0PgAAMD0AAES-AADgPAAAPz8AAFA9AABAPAAAPD4AAJi9AAAQvQAAMD0AAHC9IAA4E0AJSHxQASqPAhABGoACAAAkvgAAgLsAAAS-AAAzvwAAcL0AAOg9AACaPgAA4DwAAHA9AAA0PgAAiD0AAMi9AACYvQAAmL0AAJi9AACAOwAADL4AAB8_AACivgAAkj4AAHA9AABcvgAAQLwAABS-AACgPAAAND4AAPi9AADgPAAAcD0AALg9AACoPQAAQLwAAAy-AAAMvgAADD4AAHC9AAAUPgAAmD0AADS-AACAOwAAqj4AAIi9AABsPgAAML0AACS-AADgvAAAf78AAAQ-AAC4vQAAoDwAAEA8AADIPQAAkj4AAIC7AAAkPgAA4DwAAIi9AAAwvQAA4LwAAKi9AABQPQAAmL0AAOC8AAAUPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=t38MnYb6MdU","parent-reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["9724142725960996841"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"4112130870"},"4520370567750019805":{"videoId":"4520370567750019805","docid":"34-9-11-Z18EDDE30980081F4","description":"Come join as we solve an infinite differential equation! y=y'+y''+y'''+y''''+... Join us on this journey and let's conquer this challenge together! If you enjoy the video, hit like and subscribe...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3244160/3d43323c9c441ba387de91c3c35f21ed/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/5OboLgIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","isAdultDoc":false,"relatedParams":{"text":"An Infinite Differential Equation?!?: y=y'+y''+y'''+y''''+...","related_orig_text":"Y.Y.F.","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Y.Y.F.\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=YyOh8F502DE\",\"src\":\"serp\",\"rvb\":\"EqsDChM1ODczNTEwOTUyMTg1NTQ5OTUzChMyMTQyNTM3MDUyMjA3MDQ0MjExChQxNjQyNDE3NjUzMzA0MjE1NzIxMgoUMTIxMzczNjk5ODEzODY1OTU2OTkKEzUzMzc2OTMxNzc2NDUyNzkxNzkKEzc1ODM0MTg4ODczNTI1Njk1OTkKFDEwNDI4MTAxMTcwMjk3MTg1MDg3ChIzNDQ1NjQxMDM3NzQzMjExMDgKEzU4MTQ5MDIyMTYyNzY3Mjc4NDMKEzk3MjQxNDI3MjU5NjA5OTY4NDEKEzQ1MjAzNzA1Njc3NTAwMTk4MDUKFDE4MTU2MzA5ODIwNzUwMDIxMDc2ChQxNTkwNjkwNTE1MjY5MzMxNTk4NwoUMTY3ODc3NzIxNTE1ODg3NDA5ODUKEzYyNzgyNjE5Nzg3MjY0NzA0MTgKFDE0MzgyMDExNjQxMDk2NjgwMzU2ChM1MDk3MzMwMjg0NDYwMzM2NzQ5ChQxMDk4NDU1NDM1MTI0MDk0Mzk5NgoTMTYyODgxNTE0ODA2Nzg4MjIzMwoTMTk5MDc0ODc3NjM3MDUwNzg4ORoVChM0NTIwMzcwNTY3NzUwMDE5ODA1WhM0NTIwMzcwNTY3NzUwMDE5ODA1aogXEgEwGAAiRRoxAAoqaGh2Y2xpZ292bmRpb3dmYmhoVUNCcHBhSzdBWTVhOHlsTl9uZXl0d0dnEgIAEioQwg8PGg8_E4kCggQkAYAEKyqLARABGniB-wH5CPwFAAD8BQj4CP0C-gP_Afn9_QDs-Pz0Av8BAPcE__cBAAAA7ggG-QUAAAAL__wB_v8BAAoBAP_tAP8ADPH9__oAAAAGA_YB_wEAAP37_fcCAAAABQP69_8AAADzC__--_8AAPUF9gQAAAAABf4C-QAAAAAgAC2i1OE7OBNACUhOUAIqhAIQABrwAX_79AHw0d8B2QTMANEVBACvGgkACC3yAMDr8wDNFdkA7hn3AO0D7wDkEgEAuib5_xfZ4_8PyPf_OOcYAB7RAgDdAv0BHvPjADQPFgIE9_EAzBE0Afny-wAn49oCHSrl__7oFf8dDvICBSzaAg7-OgEC7Cb9JuUm_vfB9QPe4_8D9uzw-9sk9f3x3__61e0cAijk8vwABgn69ynzBBADEvnj7xX_ByvY_hcHBAQdEP8Jy-j-Bfj8BQwuFA0C2vf19sPMGfjQI_H9CQkaBRcJBPzmEPEI-PPtAwf7DQP09Pv9B9Lu8vLqC__MI_H84gj17SAALWPLHTs4E0AJSGFQAirPBxAAGsAHH7zOvrESmDtG7cA7qfcUvEQlw7t3Lsy8FNqYvSdPeT0LEYm71IEMPlK9gL0C0sC7JoaZvRXeijw8xnA8y4AzPubRiL2YYjM8dXT8vS8Tmj0LAhC9nwX3OXtfxzuvA4w8HtfAvUmznrzcbXK86QvhPa0ei7wj1DE8_DaEvIl5GLvoHcA7MqUaPVW0g7tMmQq9FtA1vfDGG7u2jCs7WzGiPbGRWr1PbE88h6_lPPeENrzdoKy8I36avU1wZT1vMC-8g5GtPbDxjz0McCY9LLsQvtkWr7z7PMo7sgKdvR9hPbySWNI86gd1Pb-ExDux1Qq92MIHPUTHmb3yO7K8ZRdcvninjDwoBLy7J5J-PXz5iD3gfI88rtcEvg2fPj3sRZm8CV-pPXbdG72QOnC8zR7oPUUCl7xoycg8Rii2us7gL72hNZo8LQ4fvFVWLj0QQhs97PoFPdmZ4r2rq6e8RoGZPaGgND1S32i7nIxHu4Ghmjo42B08IIsDvTvwGz20TBC8zwMOPd95OL1LD7c732bGPTm1872HHxg87EO4vY9QA75_QBC7weTGPFL-tD3N2Yy8Q6kdPh9q273Emqk5K7Q9PF8BFryjxJU6SjoPvak5FL3lCam7_AI1vdWdgjxUO4O8Zh6_vYUtbD1qMVu7r2Z4vC03kj2eVQ87vH1RPRhBM76xnJG5GpyNPeTHDj2eke-7kIPSPUaUWz3VHBS44UF1u2ov4r3B_yI6CM6kvRsRqTt87BE7hAWxvY39m7wQ30G1oZ3TPVGBmL2XnVE5spJAvS2_Aj2PJsi5ESYbvQEYij1YNZG5BF-HvMWaIL1G4T853SqjvFc9wL2RBh4537syPbuv7zwrFOO34WsfPL4n4DyFwCG6L1DyvahcnL1DgL-3OlWjvGjWqL1iNYu4XAy0PVVtkjxVNBo4jVsxvfqJGDzkoYy5Pf2UOxwdAb0vpaK4x8o5vXkTzTzZoRW4TKgAPcfwnb3-7jA5kR-7vKPuXj00e-O2IBg0u9Ns-bwNOkm46D81PWQfBD5nsRs4lO3LO6_6Er1POA84Lfe4PA-KjD2pvYq4opOqvVenxD29NqA4Kx_4PCfbgD2yhMC47BiyPHn8KLymXey310ZhPcZUVTw9Vqa3ndnuPZ-Vk7qjag65XEkBvcre0r0XIgS5dfX0vFnd6r0NI_E1BpadveuMHz5bH_I4QyLIPKVN1b1QB3e4Iv_sPTUpBT7zflu4n1vkOxUi-zwJxsC4AS1CvSQ6NT0o2R23e7o_vVELD73IH7e3IAA4E0AJSG1QASpzEAAaYBP2AEMsRuUhAhbn6-kFAtfGENMMwQD_2cb_FRDHHgIVy8v-D_848f3anwAAAD-3LRThAB9_0_fzWAkGC8el2idMbfcL9ujNPuq64TcfCO1H-P3ebQDILqQ9GwvEMQXxLiAALa7cEzs4E0AJSG9QAiqvBhAMGqAGAACoQQAA4MAAAK5CAAA8wgAATMIAAARCAADgQQAAUMEAAHjCAADYwQAAYEEAABDBAACAwQAAjMIAAKDBAAAgQQAAMEIAABjCAACKQgAA4MEAAMhBAACAwAAAgMIAAAhCAACKwgAAEMEAAOzCAACYQQAAAEIAACDBAADwwQAAKMIAAIzCAACAPwAAIMIAABhCAADgQQAAIEIAANhBAAAkQgAAfMIAACRCAADoQQAAQMIAACDBAADQQQAASEIAAEBBAACIQgAAgD8AAFzCAABQwgAAqEEAADjCAAAAQQAA4EAAAEDCAABQwQAAuEEAAAAAAABQQQAAHMIAAKhBAABgwQAAQEEAAIzCAABQwgAAoMAAAFjCAADYwQAA0EEAAIpCAABowgAAmEEAAADCAACAvwAAisIAAKDAAAAMQgAAQEAAALhBAAB4QgAA6MEAAEDBAAAAwQAAAEAAACRCAAAYwgAAREIAAARCAACAQQAAIEIAAMDBAACkwgAABEIAAETCAAAgwQAAGEIAAIBBAACyQgAAlMIAAGRCAACgwQAAgEAAANTCAACwQQAAAEAAAIpCAAAAwAAAoEEAAIDAAABEQgAAMMEAAFDBAAAAAAAAUEEAAKBAAACAwAAAAAAAAPDBAABwwQAAKMIAABjCAACAQAAAEEEAALBBAADwwQAA4EEAAHjCAACOQgAAMMEAACDBAACIQQAA6EEAABjCAACgQQAAwEAAAEDAAAAAQQAAwEAAAATCAAAIQgAAkMEAALjBAAB8QgAAskIAAEDBAAA8QgAA6EEAADBBAAAAQQAAisIAAPhBAACAwQAA2EEAAAAAAACGwgAAMMIAABDCAAA4wgAAEMIAAKhBAABwwQAA2MEAAKDAAABUQgAAoMAAAIhCAABYQgAAHMIAAIjBAABwQQAAEMEAAKLCAABEwgAAcMEAAMDAAACGwgAANMIAAFhCAADgwgAAdMIAAPjBAACQQQAAIEIAACDCAAD4wQAAQMAAADDCAABwQQAAgD8AAFDCAAAwQgAAgMAAAPjBAACoQQAA8EEAABDCAAAsQgAA2EEgADgTQAlIdVABKo8CEAAagAIAAFC9AAAwvQAAbD4AAEA8AAAMPgAAdD4AABA9AADuvgAAMD0AADA9AAAEPgAAVL4AAIC7AAAcPgAAqL0AAMi9AAAcPgAAEL0AADC9AABsPgAAfz8AAJi9AAAQvQAAqD0AAES-AACGvgAAmD0AAHC9AAA0PgAAND4AACQ-AAC4PQAA2L0AAEA8AACAOwAAuL0AANg9AABQvQAA1r4AAEy-AACovQAADL4AAEQ-AACgvAAAyD0AANi9AABsPgAAQLwAAHC9AAAcvgAABL4AAIi9AAA8PgAARD4AAGS-AABwPQAABT8AABQ-AADovQAAVD4AAKC8AAAsPgAA6D0AAKi9IAA4E0AJSHxQASqPAhABGoACAAAMvgAA-L0AAAS-AAA3vwAAML0AAAQ-AABEPgAAyD0AAIC7AABsPgAAuD0AAHC9AADYPQAAcD0AAIC7AACYvQAAoLwAACc_AABMvgAA1j4AAJi9AAAcvgAAiD0AAJi9AACIPQAAMD0AAOg9AAAQPQAAkj4AAMg9AAAwPQAAiL0AAAS-AADYvQAAyD0AAKi9AAAQvQAA-D0AAMi9AACoPQAAZD4AAHC9AAA8PgAAiL0AAHS-AACgvAAAf78AAIo-AAC4vQAAiD0AACS-AABwPQAA-D0AADw-AAAwPQAAiD0AAKC8AABwPQAAoDwAAPi9AAAwPQAAHL4AALg9AABQPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=YyOh8F502DE","parent-reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1666,"cheight":1238,"cratio":1.34571,"dups":["4520370567750019805"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"3307376430"},"18156309820750021076":{"videoId":"18156309820750021076","docid":"34-2-8-Z2E74A40121288FB5","description":"Please Subscribe here, thank you!!! https://goo.gl/JQ8Nys Series Solutions Differential Equations y'' - y' = 0. A simple example of using power series to solve a differential equation.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3502618/1c448c4d29f73e8338918ca3b02c49f8/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/4h_DBwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","isAdultDoc":false,"relatedParams":{"text":"Series Solutions Differential Equations y'' - y' = 0","related_orig_text":"Y.Y.F.","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Y.Y.F.\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=QQL1TOnsmaQ\",\"src\":\"serp\",\"rvb\":\"EqsDChM1ODczNTEwOTUyMTg1NTQ5OTUzChMyMTQyNTM3MDUyMjA3MDQ0MjExChQxNjQyNDE3NjUzMzA0MjE1NzIxMgoUMTIxMzczNjk5ODEzODY1OTU2OTkKEzUzMzc2OTMxNzc2NDUyNzkxNzkKEzc1ODM0MTg4ODczNTI1Njk1OTkKFDEwNDI4MTAxMTcwMjk3MTg1MDg3ChIzNDQ1NjQxMDM3NzQzMjExMDgKEzU4MTQ5MDIyMTYyNzY3Mjc4NDMKEzk3MjQxNDI3MjU5NjA5OTY4NDEKEzQ1MjAzNzA1Njc3NTAwMTk4MDUKFDE4MTU2MzA5ODIwNzUwMDIxMDc2ChQxNTkwNjkwNTE1MjY5MzMxNTk4NwoUMTY3ODc3NzIxNTE1ODg3NDA5ODUKEzYyNzgyNjE5Nzg3MjY0NzA0MTgKFDE0MzgyMDExNjQxMDk2NjgwMzU2ChM1MDk3MzMwMjg0NDYwMzM2NzQ5ChQxMDk4NDU1NDM1MTI0MDk0Mzk5NgoTMTYyODgxNTE0ODA2Nzg4MjIzMwoTMTk5MDc0ODc3NjM3MDUwNzg4ORoWChQxODE1NjMwOTgyMDc1MDAyMTA3NloUMTgxNTYzMDk4MjA3NTAwMjEwNzZqkxcSATAYACJFGjEACipoaHp6bGJqbm9tdWdoYnZiaGhVQ3I3bG16SWs2M1BabkJ3M2JlemwtTWcSAgASKhDCDw8aDz8TigaCBCQBgAQrKosBEAEaeIH5D_T-Av4AC_YEDvoN-gMcDwAH9AMDAPH6_PwHAf8A8gAI_PsAAAAEEwH9_wAAABX_9Pv0Av8BIAsA_fIA_wDw_QEFAAAAABgG9fn-AQAA-Pb2_QP_AAAT8vn2_wAAAPwJAQH8_wAA8hHyCAAAAAAT-wAB_PT-ACAALY76yzs4E0AJSE5QAiqEAhAAGvABfwgIAc37zv_gJPAA4wv0AZ80A__vMPQB0vvnAckW1gAP7tIAz_rH_yH-Av-iEgwB-xTO_xDYBQA07gD_QuAaABUE9wA4_xMBPBMt__4F6P_bDxz_AA3y__jz0QAIC9H-IdQN_w8H6wLtA8ICCtQ_AwTWEQId2xL-79cAAdwfFgD-3cH_8v_k_vrjCv7tMQsEJ_cEBAAHCvraLPQC-er3APL0HPkU9d0A-e31DhTsEfrS7gz6_er6-AQHLP_VDf0G8_cmAu398vnwFQnwJPwE_tQQ_AD4z_MPFA33AOzM8wIKBuUB5u_w-9QZAv7bDPL_IAAtjbsTOzgTQAlIYVACKs8HEAAawAdtyN--c_fUPP4BoDzJd4S61TXkPPvxzbw8izm9chsIPceBHjpRu689ns46vAiiOLyBCAG-Nz5JPa5tgLzFVYU-VDBvvZt_Krx6Fy--CDwwPSmf1LzwLsy9K2mFvBzOfLztKPO89l2Ruwx547vWoi89VD30vNqkKrupqsi7sl0mvV_BDL0iF6G9O5yKvAUrU71xsRy8tDmevcZp7bz4RGg9vcNtvN7bvjtcEGA9AJdWvY5RqLxrEbG9x8jIPB8R07yZQ_c8Qjw3PTuWLbxY_ry9xdmevSpLXzspD2G9QDX7O_d2y7vf_MY97BvzPIdZPr1fjJI9ThE7vHHBvrwmNfS9fgMuPau6Aj0q0Yg9ig0MPSymyDwY0gG-SYOrPZYmJbx_ZUo9v9HzvP_MoLxgIRM9G9yBPU6IzjvIbWq7zJGZO64iijvg7AC94FiGPJ052jwWhNI9RXaPvSdnKLytM949KubjuWyE9rtZJFe9--Z-vP2FgTttrIQ8HRA3PbNbcDzU4gI9W422vJiQB7wFI6U91gI7vknlmjomlHm9sQlavZGCfTmg86Q8Xx4XPTCz-LpO8M09ZjPnvf9XADwY7MY8OzO2vaDhLDsjdEa9nD2GvJJMGLqAr5K9M_Aru5R_Urw2GqW9W8qePOsqD7yd-Ki76ZFwPVXnRbvFZQY9-gwIvlUhA7p4H4w9IrFzPYByCLs7Bl89eLcSPUHGs7oirAQ7KJmRvc3KtLs9SgK8fCx9vCrUBzy0IqW9bS09vWq4hDltA9c9taPYvQyfrzkK9wo9zwYqPfatvTkbaB69kGzJvPelCzm50mE9Lt6UvXNP3TjpD008qDg-vnKfXTklJZg99iWbPNv0gzmaalo7hwYYPbM_1Do-Qp296KpUvZaHTrnoGgE9K726u_yDl7k-vpM9kXWdvDBN8zfFNk68UKinOzoO2rhIpw49VhgxvTR6FLdpewo9kxVoPBuQqThB8QM9cU_Bvdc4ezmV4cs65wGHPTIxizcGCkG9kO-3PBEHYzgBxk49Jpq2PL8qhrgVFJA8c-WCvY_pfDilJeA8QbH6PEA707hr8em9edYkvO4vYDbILFa8bRvGvBx7JLjn172734x1vAjhQ7gQlrG7R7AMPbrSejiSXRk-2U9QvazCP7lcSQG9yt7SvRciBLkeKng7JQTrvSO_ZzibS1u9kjynPW1wgTi9rwU9pUkJvq2ehbgi_-w9NSkFPvN-W7geOIK9M_OePZzn8ri0Afi9tVhFPVHgXDj5yQe8IIEavW58nbcgADgTQAlIbVABKnMQABpgSOoAExIc7iILMejmxf4T7dAE3feh_v_R3f8WJfoBITG-vfr7AFTc_uyiAAAAMdAQ9tkASH_XyvtOCx0j6Kzf4CllwBj8veAEGrDFIv77ADIw8SJKAMv2mCEZ6KwxERERIAAtTuMVOzgTQAlIb1ACKq8GEAwaoAYAADBBAACQwgAABEIAADDCAACwQgAAcMEAAFhCAACIwQAAAMAAAMBBAAAQwQAAFMIAADBBAACgwQAAEEIAAABBAADQQQAAoMAAABBBAACgwQAAwEAAAGDBAADwwQAAoMAAAIjBAACAvwAAYMEAACTCAAC4QgAAAAAAAMDBAAAQwQAAVMIAAADAAACMwgAAyEEAAAxCAADSQgAAoEEAADxCAABwQQAA6EEAADDBAADAwQAApkIAAJDCAABwwQAAbEIAACBCAAAAAAAAiMEAACTCAAA4wgAAoMEAAGDBAABEQgAAjsIAAIBBAAC4QQAAIEIAAABAAAD4wQAAJMIAAMTCAADIwQAA9MIAAMDBAAAowgAAUMEAAGDCAACwQQAAmMEAAOzCAABgQQAAyMEAAIDBAAA0wgAAAAAAAPjBAABUwgAAgL8AAL5CAADgwAAAAEIAABBBAACAPwAANEIAAFhCAADQQQAAcMEAALjBAACIQgAACMIAABRCAABIQgAA2MEAAIjCAADgwQAAgkIAAFhCAABgwgAAAEAAAARCAADAQQAAMMIAAKBAAACgQQAAYEEAACBBAACKQgAA4EEAANBBAADgwAAA6EEAAHTCAAAUQgAAiEIAAMDBAACAwgAACMIAAPjBAACAwgAABMIAANhBAABwwQAAJMIAALDBAAAQwQAANEIAAIC_AADIwQAAcEEAABBBAACeQgAAIMIAAIpCAAAYQgAAQMEAACDCAABAwAAAMMEAAAzCAAAUQgAAMMEAAJhBAACYQQAAFMIAAJDBAAC4QQAAMMEAAADCAACoQQAAoMAAAFDBAABQQgAAMMEAAMDBAAAAQAAAksIAAEjCAABowgAAmEEAAADCAACwwgAAAAAAAAxCAABQwQAAkEIAAIxCAADAQAAAFEIAAKBAAADwwQAA-MEAAETCAAC4wQAAEMIAAKhBAAD4QQAAAEEAAMjBAAAIwgAAmMEAABjCAADgQQAAFMIAAMDBAAC8wgAAoEEAAGBCAAD4QQAAJMIAAChCAAAwwQAAQEEAAEBBAAAQQQAABMIAAOBAAABwwSAAOBNACUh1UAEqjwIQABqAAgAAMD0AALi9AACAOwAA6L0AADQ-AAD4PQAAiL0AABe_AAA0PgAAED0AADC9AAAcvgAA6L0AAIY-AAAcvgAAyL0AAIo-AABQvQAA2L0AALo-AAB_PwAA4LwAAFw-AABkvgAAjr4AABy-AAAcPgAA6L0AAJg9AAAkPgAAZD4AABA9AACoPQAAHD4AAFA9AADIPQAAuD0AAMi9AACWvgAALL4AAJK-AAD4vQAAJD4AAFA9AABQPQAAFL4AAIg9AADgPAAAkr4AAAy-AADIvQAAbL4AAMg9AAA0PgAARL4AAKA8AAAZPwAAML0AAHS-AACAOwAANL4AABQ-AAAsPgAA6L0gADgTQAlIfFABKo8CEAEagAIAAAy-AABQvQAAcL0AADO_AACYPQAADD4AAKo-AACoPQAAcD0AACQ-AAAwPQAAcL0AADC9AADYvQAAHD4AAEC8AACIPQAAGz8AADS-AADSPgAAJL4AANi9AACAuwAA4LwAADA9AACoPQAAoDwAAKC8AACoPQAAED0AAKC8AACgvAAAcL0AAMi9AAD4PQAA4LwAAEC8AACAOwAADL4AABw-AAC4PQAA4LwAADw-AACgPAAAVL4AAKC8AAB_vwAAcD0AADS-AACAOwAAJL4AAJg9AABsPgAAQLwAAKA8AABQPQAAgDsAAAy-AABwPQAA2L0AAIA7AADIvQAAEL0AACw-IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=QQL1TOnsmaQ","parent-reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":700,"cratio":1.82857,"dups":["18156309820750021076"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"1386096388"},"15906905152693315987":{"videoId":"15906905152693315987","docid":"34-7-13-Z29FC613785ED50ED","description":"and complex pairs to the characteristic aka auxiliary equation. The same basic idea applies for higher order differential equations as well, its just that we have more roots but they are all the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1962952/975e7be22bccd9339d365ae0d5e7afa8/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/MIFrQwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","isAdultDoc":false,"relatedParams":{"text":"Higher Order Constant Coefficient Differential Equations: y'''+y'=0 and y''''-3y'''+3y''-y'=0","related_orig_text":"Y.Y.F.","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Y.Y.F.\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=is0F0u62IbY\",\"src\":\"serp\",\"rvb\":\"EqsDChM1ODczNTEwOTUyMTg1NTQ5OTUzChMyMTQyNTM3MDUyMjA3MDQ0MjExChQxNjQyNDE3NjUzMzA0MjE1NzIxMgoUMTIxMzczNjk5ODEzODY1OTU2OTkKEzUzMzc2OTMxNzc2NDUyNzkxNzkKEzc1ODM0MTg4ODczNTI1Njk1OTkKFDEwNDI4MTAxMTcwMjk3MTg1MDg3ChIzNDQ1NjQxMDM3NzQzMjExMDgKEzU4MTQ5MDIyMTYyNzY3Mjc4NDMKEzk3MjQxNDI3MjU5NjA5OTY4NDEKEzQ1MjAzNzA1Njc3NTAwMTk4MDUKFDE4MTU2MzA5ODIwNzUwMDIxMDc2ChQxNTkwNjkwNTE1MjY5MzMxNTk4NwoUMTY3ODc3NzIxNTE1ODg3NDA5ODUKEzYyNzgyNjE5Nzg3MjY0NzA0MTgKFDE0MzgyMDExNjQxMDk2NjgwMzU2ChM1MDk3MzMwMjg0NDYwMzM2NzQ5ChQxMDk4NDU1NDM1MTI0MDk0Mzk5NgoTMTYyODgxNTE0ODA2Nzg4MjIzMwoTMTk5MDc0ODc3NjM3MDUwNzg4ORoWChQxNTkwNjkwNTE1MjY5MzMxNTk4N1oUMTU5MDY5MDUxNTI2OTMzMTU5ODdqiBcSATAYACJFGjEACipoaG16d3dhcXN1bnZvanViaGhVQzlyVHN2VHhKbngxRE5yREEzUnFhNkESAgASKhDCDw8aDz8TpgWCBCQBgAQrKosBEAEaeIH7AAH6_wIA_AALDvgJ_AITAgT59gEBAOv4-_MC_wEA7fwD-gP_AAD__gb0-gAAAAj29_73_gAACwEA_-wA_wAH-vYFAgAAAAYM-v3-AQAA-Pf3_QP_AAAAAwIB_wAAAPgLB_r7_wAAABf3CwAAAAAOBgIDAAAAACAALVkm1zs4E0AJSE5QAiqEAhAAGvABdP4E_eXR9gGBC9EAABbVAdbrKgAr3hb_s7nSBLscywDWJOcA_Tbf_uw9CgGYBjEBswSl__v15AFN4eL_Gw8CAPsq2gEdFdUCWOwm_xDT-_-CJQr98MHp__241QB0K8H9B-X5A0Ez1f_z8NIILvo6ARclIP8R-_AB0O4H_8oM9ALn-vr2GRQtBgQCB_nNISkCAfIDCRMmH_jBQNgFCskN-yK2GvwEINwGMA8JEfYc9P6eyRH_0w_xD-sJCAwS3dYK39km_9_J8vUA9voFGxD569hA8fgi8fEP5dbx9N4IGQbsz_cM3urzEugq5A3i_eYFIAAtEq7qOjgTQAlIYVACKs8HEAAawAc1tcy-oXRYPL1NBD0jXqi8tKy7vKQev7s8izm9chsIPceBHjobEBE-0lRPvPSFFT1LCDG9yeYKvepirrxyp6w-LSVrveFIe7xYx9G9DLyJPGwDfL1FvPW9Z-jEPKy4J7z0Nja8nfqbvHEkq7yydZo9pcvRvC3oAbwiFMA81sz1vIUqkLwoEzI9sF8rvbGnPb3wkLi9_Uy9PAJIDDwLVRs95J_8uzjU1rtvZ7q8eMIhPWIs9DtPJHO8uIIcPVoNibwP_I49_IwrPd8g9TxCJpm9ykBBOk_RLL0pD2G9QDX7O_d2y7vSxaY8eDsnPbZqNrufEdc7-bV6vfZOnrtlF1y-eKeMPCgEvLuV3Fw9BkI3PXC2yDkdPd69vsAMPrsIC7qxOBc9Kgs1PcDLzLx-oey6HuI_PQhGlDzWZJc9OCEDvbc1N7uNSiU91iMoPSzzljy-M3W9PVqBPHNZ1ryo7Ko8oV4VPf0dwLsqWYm9JXQ4u6a1zLoK6uW81wRHPcUhFzwY64s9BVklvd5UZjvIzxY-aWNWvZdqWzoKQoO9bL-7vQyD6Dvg6Z-8Oji9PeblMLzkLEw-6lePvQMMhTs30kO9VcJyuwK6TLvVrzQ9QVDJvJV-BLwhhme9OmgEPF2MnruUdyS9L4W3PSeh17tCPSI8LXFpPVnppDs0_hO9OOJEvUu-Bju0YFg9z_npPMQvqzrYABs9De4dPUm9Brur5r49iQwrvozmljp1OvC9mf-GvVS4QjqkRQc9_LINPIjT1zmqgqE9GhiZvUdKoDhBpLo87FPpvB72QTmURsG9Bs-OvE0wpbg5WCk9COkpvNv1aTkUnYu9iXrhvcYncDkA8Qg8kCOlOm4kv7rkgrM8DtcqPVDjaLpKCxe-Ctyavamq4bZf02O9u-2HvUQcKzg4FN49iz2fPTKtt7ifTuA7RvWxvBSnLLf2sq28CDUoPVHnS7h9IKk91T2yPPVI9Tjsua-7xcGavROAdjnG86495J-pPeQCajZlRR49MoExPTRclbasE2E8AoTvPaganjaBOko9bdhAvTker7e_8-s9rC5xvFXMUjisCZi9SBC2OwSmwTcEEI09er0AvQUwgDjJIii8SP8mvdOaTbYAlBq9GxJ3POOGsziSXRk-2U9QvazCP7nZmIc9O5wOu6VUwDdyNAk7cI60vTjSjbYdPoQ8kWHVPbj3vLd0svk8MTABvbfL1bYi_-w9NSkFPvN-W7hm2RO9hBiePHZTdri-oAk8naGYPcoDhTdmHFm8tnuOvVYiw7cgADgTQAlIbVABKnMQABpgTPEAOfsszhTxFvTKv-Pc290q89y_G__t7P8FW-AXJDa91-Ly_0n-MM-WAAAALvcBLfIA-H-93epdBiwEuaAbJT56tgYPwgA_-e_OVybr6RzxJiVWAMsUveoYBpgyJucYIAAtOUoMOzgTQAlIb1ACKq8GEAwaoAYAALBBAADAwQAASEIAAADCAADIwQAAUEEAAKJCAADgwQAAOMIAAEBBAAAMQgAAgEAAAADCAABAQQAAwMAAAAhCAABAQQAAIMEAAFRCAABMwgAA2MEAAFDCAAB4wgAAXEIAACDBAABAQAAAWMIAAFDBAAAYQgAALEIAAHDBAABAwAAA4MAAAIBCAACWwgAAoEAAAIDBAACwQQAAqEEAAMDAAABwwQAAQEEAAAAAAAAwwgAAQMAAAMjBAAAAQAAAEEEAAIBCAAC4QQAAgMEAALDBAAA0wgAAOEIAAMDAAACawgAApMIAABRCAACYQQAAbEIAAIBBAAAYwgAAWMIAAATCAADQwQAAgMIAAKDAAAA8wgAALMIAAADAAABkQgAAYEIAAATCAACWQgAAFMIAANjBAABYwgAAAMEAAKDAAAD4QQAAWMIAAJxCAAAAAAAAgEAAAFRCAACWQgAATMIAAJDBAAAoQgAAMMEAAJjBAAAAQgAAMMIAAIDAAADoQQAARMIAAIBBAABAQAAAAEIAACRCAABAwgAAkkIAAEBCAACIwQAAUMIAAHBCAABwQQAAIEEAAHjCAACkQgAAlkIAAFRCAABAwAAAsMEAAARCAACaQgAAcMEAAKDBAACQwQAA4MIAAIbCAAAswgAAgEEAADDCAAAAQAAAREIAAAzCAAAwwgAA4MEAAIjBAAAUwgAAeMIAAABBAACgQgAAoEEAAADAAACAvwAAgL8AAFDBAAC2wgAAREIAAChCAAAAwQAAkMEAAMBBAADQQQAA4MAAANBBAAAwwgAAoMEAABRCAADwQQAAEEEAADDBAADgwQAAYMEAAKjBAABUwgAAksIAAHBBAAB4wgAAgEEAACBCAAAAwQAAMEIAAIjBAAAwwQAABEIAAIZCAABUwgAAfMIAAADAAAAgQgAAmEEAACjCAAAkQgAAoMAAAADAAAAAQgAAuEIAAGDCAAC2wgAAwMEAAEDBAADAQQAAuMEAAOjBAACIQQAAwMEAACjCAADAwAAAwEEAAJDBAAC4wQAAEEEAAAAAAABYwgAAYEEAALjBAABswiAAOBNACUh1UAEqjwIQABqAAgAAoLwAAIC7AADIPQAAEL0AAAQ-AABEPgAAyD0AAPa-AAD4PQAADD4AAEA8AACovQAAgLsAAIo-AABMvgAAyL0AAOg9AACgvAAAgLsAAMo-AAB_PwAAML0AAJg9AABAvAAAbL4AAKi9AADoPQAAcL0AAHQ-AAAkPgAAqD0AAHC9AABAvAAALD4AAFC9AAC4vQAABD4AAPi9AACmvgAAFL4AAES-AABwvQAALD4AAIi9AABEPgAAcL0AAOg9AACYvQAA6L0AABS-AABwvQAAMD0AAFQ-AAAUPgAAXL4AAIA7AAARPwAAQLwAALi9AABMPgAAHL4AACQ-AAC4PQAAuL0gADgTQAlIfFABKo8CEAEagAIAACy-AADYPQAAgLsAACu_AABAPAAAuD0AAM4-AADgvAAAoDwAACQ-AADgPAAAuL0AACS-AAD4vQAAmD0AAFA9AAAQPQAAHT8AADC9AADePgAAqL0AAES-AADYvQAA6L0AAOC8AACYPQAAUL0AADC9AACAOwAAMD0AAKC8AACAOwAAoDwAAEy-AADYPQAAgLsAABC9AACovQAA6L0AAMg9AADoPQAAgDsAAFQ-AABwvQAAVL4AAIg9AAB_vwAADL4AAKi9AAAQPQAAqD0AALg9AADIPQAAmL0AABQ-AAAQPQAAML0AAPi9AAAQPQAAMD0AAEA8AAAUvgAAmL0AAGQ-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=is0F0u62IbY","parent-reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["15906905152693315987"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"3482053041"},"16787772151588740985":{"videoId":"16787772151588740985","docid":"34-5-7-Z79C0ABE4130BBC3C","description":"Join this channel to get access to perks:→ https://bit.ly/3cBgfR1 My merch → https://teespring.com/stores/sybermat... Follow me → / sybermath Subscribe → https://www.youtube.com/SyberMath?sub...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4760490/d13a31e8c2e4261d4a044d80b006785a/564x318_1"},"target":"_self","position":"15","reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","isAdultDoc":false,"relatedParams":{"text":"A Differential Equation...y'=(x+y)^2","related_orig_text":"Y.Y.F.","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Y.Y.F.\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Y80lT0hTje8\",\"src\":\"serp\",\"rvb\":\"EqsDChM1ODczNTEwOTUyMTg1NTQ5OTUzChMyMTQyNTM3MDUyMjA3MDQ0MjExChQxNjQyNDE3NjUzMzA0MjE1NzIxMgoUMTIxMzczNjk5ODEzODY1OTU2OTkKEzUzMzc2OTMxNzc2NDUyNzkxNzkKEzc1ODM0MTg4ODczNTI1Njk1OTkKFDEwNDI4MTAxMTcwMjk3MTg1MDg3ChIzNDQ1NjQxMDM3NzQzMjExMDgKEzU4MTQ5MDIyMTYyNzY3Mjc4NDMKEzk3MjQxNDI3MjU5NjA5OTY4NDEKEzQ1MjAzNzA1Njc3NTAwMTk4MDUKFDE4MTU2MzA5ODIwNzUwMDIxMDc2ChQxNTkwNjkwNTE1MjY5MzMxNTk4NwoUMTY3ODc3NzIxNTE1ODg3NDA5ODUKEzYyNzgyNjE5Nzg3MjY0NzA0MTgKFDE0MzgyMDExNjQxMDk2NjgwMzU2ChM1MDk3MzMwMjg0NDYwMzM2NzQ5ChQxMDk4NDU1NDM1MTI0MDk0Mzk5NgoTMTYyODgxNTE0ODA2Nzg4MjIzMwoTMTk5MDc0ODc3NjM3MDUwNzg4ORoWChQxNjc4Nzc3MjE1MTU4ODc0MDk4NVoUMTY3ODc3NzIxNTE1ODg3NDA5ODVqrg0SATAYACJEGjAACiloaHZha3NmZHd4Z3FjcXpoaFVDVzRjem9rdjQwSllSLXc3dTZhWFozZxICABEqEMIPDxoPPxOoA4IEJAGABCsqiwEQARp4gfUBAv4F-gAZBAcI-Qv8ARX0Bwf2AAAA8u_4_wYC_wDbCRIAAv4AAO8X_v8FAAAAEPv9DPb_AAAXCvz-BQAAAPft9Af8AAAAFf4A_Az_AQH58AD3AwAAAAX6_vX_AAAA9RABAwEAAADuDfsFAAAAAA0HCfoAAAAAIAAtt8nCOzgTQAlITlACKnMQABpgBxoAEiMOBvwRCPv3-f8B6_kM_-3w8AD08wAhB_XvCQ7x6vgCACHs_wDeAAAAC_MKEQwAAiQP-e0jAgTy-9rt_Rt__hD9EwAM8-r5DQgKAQj39QUPAO8IBgsOBuoVBwAfIAAtTl6nOzgTQAlIb1ACKq8GEAwaoAYAAARCAAAkwgAAsEEAADTCAADAwAAAAEEAAJZCAAAAwAAACMIAAMBBAABwQQAAJMIAAIDBAADYwQAAUMEAALhBAABcQgAAcMEAACBCAADowQAAcMIAAIC_AABwwQAAsEEAAEzCAABgQQAAiMEAAEDAAAA8QgAAAMEAAFTCAAAwQQAAkMIAAIA_AAB8wgAA2EEAAExCAACWQgAAFMIAAMBAAAAIQgAAuEEAAJBCAAAIwgAAmEEAAKjCAABMQgAAPEIAAIJCAACgQAAAAAAAABBBAACIwQAA0MEAAIA_AADwQQAAwsIAAKDAAABwQQAAUEIAALjBAACSwgAAIMEAAHzCAABIwgAA2sIAAIjBAAAYwgAAoEAAAODBAACKQgAAmEIAAKrCAAAsQgAAAMEAAPjBAAAIwgAAbEIAAEBBAAC4QQAAUMIAAGhCAAAAwQAAEMEAAARCAABAQQAA-EEAANhBAADgQQAAGMIAAGjCAADMQgAAZMIAADDCAAA4QgAAoMEAAAAAAACIQQAAMEEAACRCAACYwgAAwEEAAIhBAABAwAAA4MEAABhCAABQQQAAPEIAAABAAABIQgAAQEIAAGBBAADgQAAAHEIAAEzCAADYQQAAoEEAAEzCAACgwAAAIMEAAFjCAACSwgAA8MEAAEBAAACgwQAAQMIAAHDCAACAPwAAVMIAALhBAACgwAAAmEEAAABAAABYQgAA-MEAAFxCAADgQAAAyMEAANBBAACCwgAAIMIAABRCAADYQQAATMIAAARCAABYQgAATMIAAERCAACIwQAAgMAAAGDBAAAQQQAAGEIAACDCAACQQQAA4MAAACBBAAB8wgAAUMIAAIBBAAAcwgAA6MEAAJDBAAAMwgAAwMEAACxCAACAPwAAVEIAAGxCAACAQAAAYEEAAMDBAABAQAAAgsIAACzCAABQQQAAAAAAAFDCAAAwQQAAYEIAAKTCAADwwQAAwMAAAIjBAAAAQgAAosIAAJrCAAAAwAAATMIAAODAAABAQQAALMIAALBBAACAwAAAkMEAAHRCAAAQwQAAoEEAAJjBAAA4wiAAOBNACUh1UAEqjwIQABqAAgAAiD0AAFC9AABwPQAAFL4AAIg9AACePgAAFD4AACG_AABwvQAAMD0AABA9AADCvgAAoLwAAII-AABEvgAALL4AAMY-AABAPAAAuD0AAO4-AAB_PwAADL4AANg9AADovQAAmr4AAOi9AABUPgAAyL0AAEC8AABUPgAAhj4AAEA8AAAQvQAAEL0AAFC9AADgPAAAND4AAIC7AACivgAAZL4AAES-AACAuwAAPD4AAJg9AADYPQAAQLwAALg9AAD4vQAAXL4AAMi9AAAMvgAANL4AADw-AACWPgAAML0AAJg9AAAXPwAAiD0AAHS-AABEPgAA6L0AAII-AAA0PgAABL4gADgTQAlIfFABKo8CEAEagAIAAPi9AAAwPQAAmL0AADW_AAAcvgAAED0AAMY-AAAQPQAA-D0AADA9AAAsPgAAFL4AAOi9AAAwvQAA4DwAAEA8AACgvAAAHz8AADS-AADOPgAAoDwAAGy-AADIvQAAPL4AADA9AABwvQAAcL0AAKA8AADYPQAAmD0AAFA9AAAwPQAAbL4AAHC9AAB8PgAA2L0AADA9AACIPQAAgr4AABA9AABsPgAAUL0AAOg9AADgvAAARL4AALg9AAB_vwAA6D0AABC9AAAUvgAAiL0AAEQ-AADgPAAA4DwAABw-AADYPQAAUL0AAOA8AADoPQAAgLsAAFA9AAB8vgAAgDsAAAw-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=Y80lT0hTje8","parent-reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["16787772151588740985"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"6278261978726470418":{"videoId":"6278261978726470418","docid":"34-10-14-Z3B1248D24A0D3006","description":"Visit http://ilectureonline.com for more math and science lectures! In this video I will solve y'=(y-x)/(y+x). Next video in the 1st Order: Reducible to Separable Forms series can be seen at...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3142728/ba08e49ec4a3412dc2e7380fb7b05d8d/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/0GKYBwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","isAdultDoc":false,"relatedParams":{"text":"Differential Equation - 1st Order: Reducible to Separable Forms (6 of 7) Example 5: y'=(y-x)/(y+x)","related_orig_text":"Y.Y.F.","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Y.Y.F.\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=rPEx5ILE0b0\",\"src\":\"serp\",\"rvb\":\"EqsDChM1ODczNTEwOTUyMTg1NTQ5OTUzChMyMTQyNTM3MDUyMjA3MDQ0MjExChQxNjQyNDE3NjUzMzA0MjE1NzIxMgoUMTIxMzczNjk5ODEzODY1OTU2OTkKEzUzMzc2OTMxNzc2NDUyNzkxNzkKEzc1ODM0MTg4ODczNTI1Njk1OTkKFDEwNDI4MTAxMTcwMjk3MTg1MDg3ChIzNDQ1NjQxMDM3NzQzMjExMDgKEzU4MTQ5MDIyMTYyNzY3Mjc4NDMKEzk3MjQxNDI3MjU5NjA5OTY4NDEKEzQ1MjAzNzA1Njc3NTAwMTk4MDUKFDE4MTU2MzA5ODIwNzUwMDIxMDc2ChQxNTkwNjkwNTE1MjY5MzMxNTk4NwoUMTY3ODc3NzIxNTE1ODg3NDA5ODUKEzYyNzgyNjE5Nzg3MjY0NzA0MTgKFDE0MzgyMDExNjQxMDk2NjgwMzU2ChM1MDk3MzMwMjg0NDYwMzM2NzQ5ChQxMDk4NDU1NDM1MTI0MDk0Mzk5NgoTMTYyODgxNTE0ODA2Nzg4MjIzMwoTMTk5MDc0ODc3NjM3MDUwNzg4ORoVChM2Mjc4MjYxOTc4NzI2NDcwNDE4WhM2Mjc4MjYxOTc4NzI2NDcwNDE4asEPEgEwGAAiRRoxAAoqaGh0eHl5Y3FwYmllamxqZGhoVUNpR3hZYXdoRXA0UXlGY1gwUjYwWWRREgIAEioQwg8PGg8_E6AEggQkAYAEKyqLARABGniB-AACBgH_AAD7Bgn3CfwCG_sG__UCAgDq-PvzAv8BAPkLC_n_AQAADQUEBgMAAAAm-QEBAgMCAAwLDQYFAAAAD_r89PUAAAAREfr4_gEAAPLy-PUCAAAA__oD_wAAAAD4DwXw__8AAOgMAwwAAAAACw4F8v8AAAAgAC30CdA7OBNACUhOUAIqhAIQABrwAX8RE_7b9q4B2gP3ANwiCwLEHxQA_DXRAMoM5wDTDrkB4QjzAPQF3f8Y7xEBsyr4_xHdzQDawQ4AJdXw_jHo9wD79QkAFdoZAT0TLv8f8eIB3yIu_fjkEgD9xd0AGxvdACD0BP0ODNgB7QPAAhnlLgME_0UAHdr4A9vJDQH05gkFy9vK-wUY_QYD1P_51hshAjntFwUfCvH7A_Ln_uzGDgMK5_4GFkHp_xLiAwflHN__z-339wz67wsJGxEF8wLk-PUFF_HT5RT3-QAYDiX8BP7TEfwAD-wCExvzDwQC9P37A7Xv-rX9CQfn-O4C3wj07CAALR1GEDs4E0AJSGFQAipzEAAaYCLxACgOJ90dFgoA3MP6Edj2CdYJ2Rr_5NH_BjPsHzYTycAYCgAiq0DDnQAAADAA9ebqAAV_6NwXHwvnEsDI2ekRVPQyDI38NAcJ-DMGDQXpFgYZTgDL7qRISru-Nto2RSAALQggGjs4E0AJSG9QAiqvBhAMGqAGAABQQgAAYEEAAK5CAACQwgAAgEAAAIBAAACmQgAATEIAAIjBAABAQQAAEEIAAADBAADAwQAAJEIAAKBBAABQQQAAkEEAAGzCAABgQgAAeEIAAOBAAAAQQQAA0MIAAHRCAACowQAAgMEAABBCAADIwQAAAAAAAFxCAAAQwgAAwMEAANzCAADgQAAAbMIAAGxCAACAvwAAqkIAAKBBAAAgQQAAsEEAAAxCAACQQQAAiMEAACxCAACewgAAYEEAAKhBAACoQQAA-EEAALjBAABgwQAAiEEAADBCAADgwAAA6EEAAJrCAACQwQAAwMAAAFhCAAAgQQAADMIAADTCAACgwAAAIEEAAJDBAABUwgAAQEEAADBBAACwwQAADEIAAIZCAABcwgAAKEIAAGzCAADYQQAAUMIAADBBAADgQQAAuEEAAATCAACGQgAAgD8AANhBAABAwQAAmEEAAEDAAABcwgAAcEIAABBBAAAMwgAAMEIAAIDAAAC4QQAAOEIAAFDBAAAswgAAwMAAAEDBAACIQgAANMIAAIA_AAAcQgAAwEAAAGTCAACQQQAAcEEAAIhBAACYQQAAAEIAABBBAADIQQAA6MEAAMBAAACYwQAAokIAACBBAACgwQAAfMIAAADCAACgwQAA6MEAAABAAAD4wQAAgMAAAGBBAAAcQgAAiMIAAAAAAACAwQAA-MEAAPjBAAA8QgAAikIAAKDBAAD4QgAAQEAAAIRCAAAwwgAAcMEAAJjBAACIwQAA2EEAANDBAABgQQAAXEIAANBBAACoQQAAYEEAAODAAADGwgAAoEEAAAxCAAAMQgAAqEEAAFzCAABYwgAAQMIAABTCAAAQwgAA2MEAAAxCAADgQQAABMIAABBBAAAMwgAAmMEAAGBCAAAsQgAAoMEAAKjBAAA0QgAAqMEAADzCAAAQwgAAEMIAANhBAACgwQAAmEEAAKDAAAC8wgAAWMIAADjCAAAQQQAApEIAALjBAABIwgAAlMIAAMBAAABgwQAAYEEAAJBBAACwwQAAwMEAACxCAABYQgAAMEEAAMBBAADYQQAAMEIgADgTQAlIdVABKo8CEAAagAIAABQ-AADovQAAij4AAIg9AAAwvQAAuD0AAAw-AAD6vgAAFL4AAOA8AABwvQAAHL4AAHC9AAA0PgAAnr4AANi9AAA8PgAAML0AAEC8AACSPgAAfz8AAKA8AACoPQAA4LwAAOi9AADovQAAHD4AALi9AADoPQAAiD0AAMg9AAB8PgAAFL4AANg9AAAMvgAAML0AAJ4-AAAsvgAAyr4AAJ6-AAA0vgAAoDwAANg9AABAvAAAgLsAAJi9AAA0PgAAmL0AAKi9AACSvgAA4DwAAIg9AAAMPgAAND4AACS-AABwvQAAEz8AAIC7AAAQvQAAyD0AAJi9AAAwvQAAyD0AAHC9IAA4E0AJSHxQASqPAhABGoACAAAsvgAAcD0AAEC8AAA9vwAAQDwAAEA8AAB0PgAAUL0AAIA7AACKPgAAgLsAAIi9AAAcvgAAqL0AABS-AACgvAAA4DwAABE_AAAMvgAAyj4AAFC9AAAMvgAAyL0AALi9AAAQvQAABD4AAPg9AACgPAAA2D0AAJo-AACIPQAAED0AAIK-AAD4vQAA6L0AAKA8AABwPQAA4LwAAFy-AACYPQAAUD0AAOC8AAAsPgAABD4AAFS-AAAEPgAAf78AABA9AAA0vgAARD4AAJi9AACoPQAATD4AAIA7AACYPQAAgDsAAIA7AAAwPQAA4LwAALi9AABAPAAAiL0AAJg9AABQPSAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=rPEx5ILE0b0","parent-reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["6278261978726470418"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"3712360377"},"14382011641096680356":{"videoId":"14382011641096680356","docid":"34-1-2-Z243A7D2E09F619A3","description":"Solve y''*(y-1)=y', I misread the original problem from Maxime but I got this! Still cool! Shop t-shirts & hoodies: T-shirts: https://teespring.com/stores/blackpen... Second order non linear...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/760317/5fcd06b3b3b4fad0e35f9b8609db3c7c/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/8gd8wgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","isAdultDoc":false,"relatedParams":{"text":"A strange differential equation y''*(y-1)=y'","related_orig_text":"Y.Y.F.","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Y.Y.F.\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=XjhaiW4wMkQ\",\"src\":\"serp\",\"rvb\":\"EqsDChM1ODczNTEwOTUyMTg1NTQ5OTUzChMyMTQyNTM3MDUyMjA3MDQ0MjExChQxNjQyNDE3NjUzMzA0MjE1NzIxMgoUMTIxMzczNjk5ODEzODY1OTU2OTkKEzUzMzc2OTMxNzc2NDUyNzkxNzkKEzc1ODM0MTg4ODczNTI1Njk1OTkKFDEwNDI4MTAxMTcwMjk3MTg1MDg3ChIzNDQ1NjQxMDM3NzQzMjExMDgKEzU4MTQ5MDIyMTYyNzY3Mjc4NDMKEzk3MjQxNDI3MjU5NjA5OTY4NDEKEzQ1MjAzNzA1Njc3NTAwMTk4MDUKFDE4MTU2MzA5ODIwNzUwMDIxMDc2ChQxNTkwNjkwNTE1MjY5MzMxNTk4NwoUMTY3ODc3NzIxNTE1ODg3NDA5ODUKEzYyNzgyNjE5Nzg3MjY0NzA0MTgKFDE0MzgyMDExNjQxMDk2NjgwMzU2ChM1MDk3MzMwMjg0NDYwMzM2NzQ5ChQxMDk4NDU1NDM1MTI0MDk0Mzk5NgoTMTYyODgxNTE0ODA2Nzg4MjIzMwoTMTk5MDc0ODc3NjM3MDUwNzg4ORoWChQxNDM4MjAxMTY0MTA5NjY4MDM1NloUMTQzODIwMTE2NDEwOTY2ODAzNTZqiBcSATAYACJFGjEACipoaHJ3cGl6a2NucW5hZ3hiaGhVQ19TdllQMGswNVVLaUpfMm5kQjAySUESAgASKhDCDw8aDz8TtgSCBCQBgAQrKosBEAEaeIH7BAEC_gMA_QALDvgJ_AL7_AT9-v39AOv4_PMC_wEA6wMGAAL_AADuCAf4BQAAAAb8CQv7_QEADQD9A_sAAAAG9P37BAAAABYG9vn-AQAA_Pv99wIAAAAJ_AHv_wAAAPYE_wD__wAA6QsDCwAAAAAEBvn8AAAAACAALZ112zs4E0AJSE5QAiqEAhAAGvABfwTq__noyAPYBMoAwioJAKosI_8dJeEAzQvpANYG4QHtGN8AzAHe_zf5DQDOLP7__PnO_gPKFP85yub_I_AHANnyCQBA8eIAHQUbASAA5v7eDAr-8vvyAfTctgAeK-T_CvMS-g0R-P79-NX9_90cAx7tJAI6Av8BANUJBeEDCgHyu9gA0AD3-x_VLgHaBCECAfUCBwEVAvrsI_4EBdHqBhrHFP0DGOUFD9_tDAjgC_zB6xT99xjl-hjwEwAI-PYF8_clAtMT-vId9PPzHAkQBvUaAgzo3gUQ-NUFBwHvBAfdCPD8Ef0M9u0K6wbb8vX5IAAtrqMZOzgTQAlIYVACKs8HEAAawAfZzwK_sI2dvF5RJT31Cg88GjbnO1U9T73DZKo9elPRPPJEK73b3SM9lKXxvFYp_byf5Ja-G9hqPUoNTb3FVYU-VDBvvZt_Krzc9Be-ftQ1PapiDTxHjw--baSRPGg4yjzwhvQ9p7PTPHebHL1vwAI9ONFTvQoJoryygl-99AikvHl8lrwCDhG-DjrXvCc-Lbxung-9YNcFvakBGb1T0K08FuwQvRJv-LwgV1Q9OK4VPcYEyroQlJm7yCuLPe7mzrwsKDw-OoGfPP0CsLwxQhi9wvr_PDGviLwfoaS7ViYhPWaGqjvTmSW9Fzl6PFuoRrx4Z4o704gZvQX52bxPuoS7__G5vPW1U7wnkn49fPmIPeB8jzzc74W93Qn2Pcid67oy9ZQ9U0fqua6OEr3T-tu8bJnKOmq3wjwgooc8-aRuPaBIgbwk0Q28mWgrPViQZjwyEmu8M_TXu7hS07ugm4c9CPh_PGu-iLs6BM49gXymu8x_SLyu0oK9842NvDDlLjv06We8-pw2PT6_HDznhT-7YYGpvesIFrzEBUC9bqPBvOS_vLu1kSY9f6swPbsdzLvAhes8pQSjvb3SRzvlwoc9WKyRvd1ivDvmwnI9gD9hPTXtg7u2SjA8j0EfvMuIybuYoty9eSe6vBvv8bqh_Bg90XxJPXYqKjw7iQy8BGkQvUEWnjsMAxY9fQgqvPrUUruLEJg9EZ_FPP5M8rlSXxs9WWGEvG15WDkeE468ex89vVGWqbtO82m8e7aDvRyb27oqVAc-nLvCPCsnKDgk0MW8bSZVPUHZpTfE93S9J2ZeO3P-EDkC7yk9zRm2vJ0lFThcVAu9nBXxvdyedTkRQ6E8fIidu3U0ejrGJmM9S9aXvPZvzjmjGIU84LAdPKW2O7r77bY9Fjx7PUaYC7l7s7g7X_ZGPTSj3bifTuA7RvWxvBSnLLcmN8w6kf6ovIkI3jl-v_085B9MPQdrKDnikgM-jsOlvYIxoTnuTcK9lhCiPSPnsbhlhNy8rJeVPXovCTf3V889qVKOvKp1Arh4jZc99W9yvE8yajfMXYs8nA6uPHXfBrhaNKO9fFpKPXIgbDicSFU9Ty2RPN6pnDiMSPm8kjwXveQvGze2uKu8MiYYPS7TbjjUYNo9B-ORvceXT7lndRu8hG3duniwrzcuOjk9EHQ5va3sKzcF-uS97QZ2PSp7zzhJ9448rVDEvXOc8rgi_-w9NSkFPvN-W7iYk2U7gAvSPZjkD7lpi2s8hctPPWqeJbgl0qG9GMNmPKuXajggADgTQAlIbVABKnMQABpgGOsADgo45hoEFgTMyewC2eMO0RfGIP_H5P8xLdEpQiHE1Qf0AD3qGM6ZAAAALuID8tYA7X8TxhNX4iEMtbrODAdd6ikRBuEZAKPrPyf28BcqJ_I_AMT3ojUMyNtF9AlFIAAtNqgZOzgTQAlIb1ACKq8GEAwaoAYAADRCAACAwQAA5EIAAGDCAAC4QQAAgD8AADRCAADAwAAAosIAAODBAAAAQQAAHEIAAFTCAACAwAAA0EEAAOjBAAAMQgAAWMIAAHRCAACowQAAgMAAAJhBAAA0wgAAEEIAAKhBAADAQAAA2MEAAFDBAABUQgAAsEEAALhBAACAQQAA6MEAABBCAADAwgAAdEIAAMBAAAC-QgAAiEEAANBBAAAAQAAADEIAAIDBAAAkwgAAFEIAAMDBAADwQQAA8EEAAKhCAAAgQQAAgMAAANDBAADAwAAAMEEAACBBAAAYwgAAYMIAAMhBAABAQAAAEEEAAADBAAAkwgAAdMIAAMDBAADAQAAAoEAAAEDAAACewgAAXMIAAHDBAABcQgAAQEEAAIjCAADKQgAAUMEAALTCAACEwgAA2MEAABBCAABQwQAAyMEAAKhBAACQQQAAgEEAAHBCAACyQgAAqMEAAIBBAAAAQQAAJMIAAEDBAABgQgAATEIAAIA_AADAQQAAhMIAAKDBAABgQQAAqkIAABBCAABswgAAmEIAALBBAABQwQAASMIAAGRCAAAsQgAApkIAADDBAABYQgAADEIAAIBBAAAAwQAAQMAAAIBCAAAoQgAAkEEAACDBAAD4wQAAlsIAAMDBAAA4wgAAgD8AABjCAAAEQgAA4MEAAEBBAAC2wgAAYMEAAMDAAAA4wgAAEMIAABBCAABsQgAA8EEAAADBAAAUQgAAqEEAAATCAAAswgAAQEAAAIhBAACYQQAAkMEAAPhBAACMQgAADMIAAFBBAAAgwgAAsMEAAOBBAACgQQAAFEIAADTCAABAQAAAuMEAAJjBAABwwQAAwMEAABBCAABIwgAAoEEAADDBAAAQQQAAQMAAAPBBAACAPwAAHEIAAEBCAAAUwgAARMIAALBBAADIQQAAsMEAAGBBAABQwQAAZEIAAFjCAABgQgAAjkIAAFDCAAAowgAAlMIAAODAAABIQgAAeMIAABTCAACgQQAAGMIAAIC_AACAPwAAQMEAAKBAAAAAwAAAwMAAABBCAABwwQAAOEIAAMDAAAAwwiAAOBNACUh1UAEqjwIQABqAAgAA2D0AADy-AAAcPgAAcL0AAKg9AAA0PgAAcL0AANq-AACIPQAAyD0AAOA8AAA8vgAAgDsAADw-AAAkvgAAML0AADw-AABAvAAARL4AAGw-AAB_PwAAiL0AADA9AABQvQAAqL0AAAS-AADoPQAAQDwAAHw-AAAEPgAA-D0AACQ-AAAwvQAAmD0AAOA8AAC4vQAAPD4AAHC9AACavgAAjr4AABy-AADovQAALD4AADC9AACgPAAAuL0AAKg9AAAQPQAALL4AAMi9AACAuwAA4LwAANg9AAAsPgAAfL4AAKA8AAD6PgAAED0AAIC7AAA0PgAAgDsAAJg9AAA8PgAA-L0gADgTQAlIfFABKo8CEAEagAIAADy-AACgPAAAmL0AACO_AACYvQAAHD4AANY-AAAcPgAAJD4AAHA9AADYPQAAyL0AALg9AACAuwAAcL0AAKA8AADIPQAAJz8AAIq-AADCPgAAqL0AAJK-AAAwPQAABL4AABA9AAC4PQAAcD0AAFA9AABkPgAAUD0AAHA9AABQvQAAjr4AAEA8AAAkPgAAML0AADA9AAAcPgAA2L0AAEA8AAC2PgAALL4AAJo-AACYvQAAgr4AAPg9AAB_vwAABD4AAK6-AACYPQAAEL0AAJY-AACWPgAAMD0AAKC8AACYPQAA2L0AAOA8AADoPQAADL4AADA9AACOvgAAyL0AAAQ-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=XjhaiW4wMkQ","parent-reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14382011641096680356"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"398806022"},"5097330284460336749":{"videoId":"5097330284460336749","docid":"34-5-11-Z3EB686CA4F894C2C","description":"How to Solve a Differential Equation with Series (x - 1)y'' - xy' + y = 0 with y(0) = 2, y'(0) = 6 If you enjoyed this video please consider liking, sharing, and subscribing. Udemy Courses Via My...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3110953/543d724b4e6fba5546ad11a7693051df/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/k2UsKQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","isAdultDoc":false,"relatedParams":{"text":"How to Solve a Differential Equation with Series (x - 1) y'' - xy' + y = 0 with y(0) = 2, y'(0) = 6","related_orig_text":"Y.Y.F.","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Y.Y.F.\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=KUTKq9IVEWw\",\"src\":\"serp\",\"rvb\":\"EqsDChM1ODczNTEwOTUyMTg1NTQ5OTUzChMyMTQyNTM3MDUyMjA3MDQ0MjExChQxNjQyNDE3NjUzMzA0MjE1NzIxMgoUMTIxMzczNjk5ODEzODY1OTU2OTkKEzUzMzc2OTMxNzc2NDUyNzkxNzkKEzc1ODM0MTg4ODczNTI1Njk1OTkKFDEwNDI4MTAxMTcwMjk3MTg1MDg3ChIzNDQ1NjQxMDM3NzQzMjExMDgKEzU4MTQ5MDIyMTYyNzY3Mjc4NDMKEzk3MjQxNDI3MjU5NjA5OTY4NDEKEzQ1MjAzNzA1Njc3NTAwMTk4MDUKFDE4MTU2MzA5ODIwNzUwMDIxMDc2ChQxNTkwNjkwNTE1MjY5MzMxNTk4NwoUMTY3ODc3NzIxNTE1ODg3NDA5ODUKEzYyNzgyNjE5Nzg3MjY0NzA0MTgKFDE0MzgyMDExNjQxMDk2NjgwMzU2ChM1MDk3MzMwMjg0NDYwMzM2NzQ5ChQxMDk4NDU1NDM1MTI0MDk0Mzk5NgoTMTYyODgxNTE0ODA2Nzg4MjIzMwoTMTk5MDc0ODc3NjM3MDUwNzg4ORoVChM1MDk3MzMwMjg0NDYwMzM2NzQ5WhM1MDk3MzMwMjg0NDYwMzM2NzQ5aogXEgEwGAAiRRoxAAoqaGh6emxiam5vbXVnaGJ2YmhoVUNyN2xteklrNjNQWm5CdzNiZXpsLU1nEgIAEioQwg8PGg8_E7kQggQkAYAEKyqLARABGniB_AkA_fsFAP0ACw75CfwCIvgCAPUEBAD49QHzAwP_AP8CBfn_AQAA-gr7AwIAAAAN_wL4Av4BAA0CBv39AAAA-wP5C_kAAAAOA_j-_gEAAAP3-fkC_wAA_P_9-_8AAAD_EP8D__8AAPcHAQAAAAAAC_7-AQAAAAAgAC2jC-E7OBNACUhOUAIqhAIQABrwAX8jCgPL-sz_7jPSANMGBQGaNwT__DbQAND65QGkFMf-9Ory_-UU0f4g5-0BkC3_AUP1x_8C5xgAK-rw_zLo9wAF8OYBCeLvATsqGgAg8OEB4Cn6_wf3-f_22M_-6hbH_wgCD_4Y8-AA7AO_AhD-QQH34hEFHtkT_u3KHAPnFPEF_tu9_-sD_gQVuhr91RwiAiTZCwIb9vD-6ib-BQjZ-Pjx8x34BBviBfXx4AQa6_gCz8kO_hnt6ggXCBQG0vP6BfL2KALUA_j_ACIVASb8Bf2y_P35CNcJFAkX_QYE5vb59Prp_-Xu7_rSGgL-4Sf58CAALbb3DDs4E0AJSGFQAirPBxAAGsAH2czhvia_arwZ-xa8Vdn3PBJV0zz4MCC9PIs5vXIbCD3HgR46EIBuPdlVbbw5e4i6dLUVvpmDkD0tBg-9_b10PpJUS70Dsew8dXT8vS8Tmj0LAhC98C7MvStphbwczny89nM0vX--rbxGOeK6b5spPXG7Qb3O0C48qarIu7JdJr1fwQy9teAlvj2qq7z3_BW9G3-HPNc3m72uqWK7_1htPfSHhzo8VZk8k2mJPb49rr1m0_g6phCDvR8AJz0zG_-8TaeQPW3OHD1-Rx69WP68vcXZnr0qS187pEScvLJDoTw7Do873_zGPewb8zyHWT69eSqGPUUHKb0KkBe9bazkvaYRLj2UTsE7QV70PAARLD1sLeU7fJrTvbGiJj19XrG86PJrPRETib1IIuo7LP6lPOdAxT2paKw86XYAPTBiBD0bB8U7buUgvfShDbxGv-w82c3sPYD07b3XWD-6x6y4PTSJlTxKahk8Qk3fO2HHmrwHoCw8sfObvMgkYz1Uh6K7LbgaPS2ZvroyHEA6m5UIvQh2DL7NpeG7JpR5vbEJWr2Rgn05QJglvKRIqTsQw5g8TvDNPWYz573_VwA8H304PRFBq70xYTQ8HEbcvDY0ijweSZM6f2wSvTMvTL2YA9a7vtv8vSvOYjzOaCE6bHg6vToG5D0bQMe6LxG0PUqaD76KV-K59StdPXMRPz2wlem6-5trPfYLVj0OKye6M49XvdrkcL09kRw62RASvUnN6LxaQqU7MZeEvaiJI73jxKY4ZrZQPYnu2b0hlb051Qj9PL299TwirI650UoQvWwwQ7z_a7A5GvhVuy68XL3vPrk4vsXgO6xTFb6mjMk5ebiIPeuqgD1uYJE5tPCruzN1eTryqYw5PkKdveiqVL2Wh065qDxVPSusKj0VmZO41aQFPTK5B71j0Zk4YFnpvEiZnrzTRSC5LXM_PQD4cb2cg5u4ACt2PAiwQz2Xk084vIYqvakTkL0Ayqg4efmpu6clxj3Erv-47uCRvYo--jxCGKK3csJkPd__Aj1sDQw4iCSju_WmHb1IdkQ4q6xyPbkbwDv_rNG4VFPSveh0z7wv-MU3gXvePLDEqDw5FCS3ZYQcvRb7izx_e0G49yizO3oxGT3Zetw49wEoPnBh3b3xZ7-5ORzIuZ89171uKD-3dfX0vFnd6r0NI_E1BxSguskgtz3C15q3FPRNPbS9p72Xl423Iv_sPTUpBT7zflu4vPehvZHOpTz_qKK4tAH4vbVYRT1R4Fw4W8rePPqE6LtJUcc3IAA4E0AJSG1QASpzEAAaYCPwACYRIPgEAx7o7OQOANTq9NPzz_T_39QAHxrwATEd1c387_8--e7rtgAAADXgGA__ADVd7PrnJ_snCue2vyEhf_gHEsThBwXG3hz3_B4y8_AFSADDDsseKQvRNxQLJiAALVpBOTs4E0AJSG9QAiqvBhAMGqAGAAAYQgAAqMEAAIBBAABUwgAAdEIAAGDBAAB8QgAADMIAAABAAADoQQAAoEEAABzCAACAPwAAIMEAAEBBAADYQQAADEIAAI7CAACoQQAA4MEAAHDBAAAQwQAACMIAAMBBAABQQQAAJMIAAIDAAABQwgAAjkIAAIBAAAAgwgAAEMEAAJLCAACgQAAAOMIAAJBBAACoQQAAlkIAAJDBAAB0QgAANEIAAABCAACgQQAAFMIAAKBCAADIwgAAQMEAAOhBAABQQgAAUMEAAIC_AAAQwQAAcEEAAJDBAAAIQgAA4EEAAOLCAACgwAAAUMEAAGxCAACAQAAAMMIAAAzCAACWwgAAoEEAAMjCAADIwQAAIMIAAJDBAABUwgAACEIAADRCAAAAwwAAgEAAAEDBAACAwAAAeMIAAIBAAACAvwAAAMEAAABAAACyQgAAKMIAAAAAAACgQAAAUEEAABRCAAB0QgAAJEIAAAAAAACAvwAAbEIAAHTCAADAQAAAZEIAABDCAAD4wQAA4EAAAIBBAAAAwAAAYMIAAPjBAABwQQAAEEEAANjBAABAQgAAgL8AAMDAAADIQQAAEEIAABRCAAAIQgAAMMEAAHBBAACOwgAAnEIAAERCAADAwAAAdMIAAAjCAABwwgAASMIAAKjBAABgQQAAAEEAANjBAAAMQgAA4MEAALjBAACAwQAAfMIAAGDBAADAQAAAkkIAAODBAACiQgAAoEAAAMhBAACYwQAAJMIAAJBBAACUwgAAYEIAAIDAAAAgQQAAMEEAADDCAABQQQAAqEEAALDBAABIwgAAQMAAAOBBAACAPwAAuEEAANjBAAA8wgAAyMEAAJLCAAAkwgAAeMIAAAAAAAAcwgAAWMIAALBBAAAgQQAAMMIAACBCAAAQQgAA6MEAACxCAACAwAAAuMEAAOjBAACwwQAAyEEAAATCAACowQAAYEIAABDCAACQwQAACMIAAIDAAAAEwgAAXEIAAGDCAABswgAAjMIAALhBAABoQgAAQMAAALjBAABYQgAAAAAAANBBAABwQQAAwMEAAFBBAAAgQQAAAEEgADgTQAlIdVABKo8CEAAagAIAAOi9AACAuwAA4DwAABS-AAAEPgAA4DwAAKA8AADSvgAApj4AAOi9AAAkPgAADL4AADC9AAD4PQAAVL4AAOg9AAC2PgAAuL0AAJi9AACGPgAAfz8AAKC8AAA0PgAAyL0AAL6-AACAuwAAqD0AAKi9AABQPQAAoLwAAEw-AACgvAAATD4AABQ-AAAkPgAAUD0AAJg9AAA0vgAAlr4AADS-AACSvgAA2L0AADw-AACYPQAAuD0AAFC9AABMPgAAML0AAPi9AAAQvQAAoDwAACy-AAC4PQAAhj4AADy-AACgvAAAtj4AADC9AABMvgAAQDwAAHy-AAAMPgAA-D0AALi9IAA4E0AJSHxQASqPAhABGoACAAAUvgAA6L0AABy-AAApvwAA-D0AAJ4-AABMPgAADD4AAPi9AACaPgAAML0AABA9AABAvAAAmL0AAAw-AABQvQAAUD0AACU_AAAEvgAA9j4AAHy-AAAMvgAAmD0AAIC7AABwPQAAoDwAAMg9AADgvAAAHD4AAHC9AADgvAAAuL0AAEA8AAAwvQAAFD4AAJi9AABAPAAAED0AANi9AADoPQAAoDwAAIC7AAA8PgAAmL0AAGS-AACgPAAAf78AAKg9AAAcvgAAqD0AABS-AACYvQAARD4AALg9AABQvQAA4DwAABA9AAC4vQAAqD0AADC9AACgvAAAEL0AABC9AAAUPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=KUTKq9IVEWw","parent-reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":638,"cratio":2.00626,"dups":["5097330284460336749"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"3063919500"},"10984554351240943996":{"videoId":"10984554351240943996","docid":"34-1-10-Z2043918819907820","description":"Learn how to find the derivative dy/dx for x^y=y^x using logarithmic differentiation, which means we will take ln( ) on both sides and then do implicit differentiation. This question was asked by...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3052228/b8f3208ae66cb89d2c0c98c04854b17b/564x318_1"},"target":"_self","position":"19","reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","isAdultDoc":false,"relatedParams":{"text":"If x^y=y^x, then dy/dx=?","related_orig_text":"Y.Y.F.","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Y.Y.F.\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=gNPb6qOafxs\",\"src\":\"serp\",\"rvb\":\"EqsDChM1ODczNTEwOTUyMTg1NTQ5OTUzChMyMTQyNTM3MDUyMjA3MDQ0MjExChQxNjQyNDE3NjUzMzA0MjE1NzIxMgoUMTIxMzczNjk5ODEzODY1OTU2OTkKEzUzMzc2OTMxNzc2NDUyNzkxNzkKEzc1ODM0MTg4ODczNTI1Njk1OTkKFDEwNDI4MTAxMTcwMjk3MTg1MDg3ChIzNDQ1NjQxMDM3NzQzMjExMDgKEzU4MTQ5MDIyMTYyNzY3Mjc4NDMKEzk3MjQxNDI3MjU5NjA5OTY4NDEKEzQ1MjAzNzA1Njc3NTAwMTk4MDUKFDE4MTU2MzA5ODIwNzUwMDIxMDc2ChQxNTkwNjkwNTE1MjY5MzMxNTk4NwoUMTY3ODc3NzIxNTE1ODg3NDA5ODUKEzYyNzgyNjE5Nzg3MjY0NzA0MTgKFDE0MzgyMDExNjQxMDk2NjgwMzU2ChM1MDk3MzMwMjg0NDYwMzM2NzQ5ChQxMDk4NDU1NDM1MTI0MDk0Mzk5NgoTMTYyODgxNTE0ODA2Nzg4MjIzMwoTMTk5MDc0ODc3NjM3MDUwNzg4ORoWChQxMDk4NDU1NDM1MTI0MDk0Mzk5NloUMTA5ODQ1NTQzNTEyNDA5NDM5OTZqrg0SATAYACJEGjAACiloaGR0cWtxeG1ubmllanJoaFVDTVV1MmxRX2lsTnNiMjZvV3JjNUVOdxICABEqEMIPDxoPPxPMA4IEJAGABCsqiwEQARp4gf4HCAT8BAAFBA4F-gj8AvYD_fj5_f0A7Pj88wL_AQDtBv7-A_8AAPEV_v8EAAAAEAf_-_gAAQENDQH6BQAAAPj3_P38AAAAEvnz-f8BAAD59_f9A_8AAAoF_f0AAAAAAQkL-f7_AAD_BgX9AAAAAAnvAf4AAQAAIAAtu0reOzgTQAlITlACKnMQABpgNRUAKvYd4J44BNzd79wU7fUY-dfl3_8I7_9CG7317yHRpxoI_ifnCOufAAAAKPIFEBUAE38WG6dlIeol5Z3A9DJ1DgHKGQQo5CL0SM_zAi8E0jdDALcN3gcb5hAyHxNTIAAtyVkYOzgTQAlIb1ACKq8GEAwaoAYAAChCAAC4wQAAsEIAAATCAABwwQAAIEEAAHhCAAAAQQAA2sIAADDBAACwQQAAbEIAAPDBAAAAwQAAHEIAABBBAAAAAAAAXMIAABhCAACoQQAALEIAAARCAAAkwgAArEIAABhCAACIQQAAEEEAABTCAAAkQgAACEIAADhCAACAQQAAwMAAAChCAADIwQAAxkIAAIA_AAD-QgAA4EAAAHBBAACgQAAAuEEAAIC_AABEwgAAgD8AAMjBAAAIQgAAEEIAAK5CAAAEQgAAoMAAAIDBAABgQQAAqEEAAFDBAAAMwgAAHMIAAIC_AAAMQgAAAEAAAGDBAAA0wgAAjMIAAABAAABwwQAAAEIAAFBBAACSwgAAJMIAANjBAAAYQgAAgEEAACjCAADCQgAAgD8AAJjCAAB4wgAAuEEAAFRCAABwQQAAUMEAAGBBAABAwQAAwEAAAKBBAACaQgAAqMEAABBBAADAQQAA0MEAAHDBAAAQwQAADEIAAJBBAACAwAAAQEAAAODBAABQQQAAPEIAAChCAAAgwgAAnEIAAOhBAAAIQgAAbMIAAIBAAAAwQgAAiEIAAATCAABYQgAAEEEAAChCAACgwgAA-EEAAM5CAAD4QQAAAEIAABDCAACwQQAAcMIAAFBBAAAMwgAAgEEAACzCAADgwAAAmMEAAIDAAADAwgAAwEAAAODAAACowQAAMMIAAMBAAADoQQAAUMEAAJjBAAAAQAAAuMEAALDBAACWwgAAAAAAAIBAAAAgQQAAcMEAAKBAAABgQQAAqMEAAGBCAAAIwgAADMIAAODAAADYQQAAmEEAAJDCAACAvwAA4MAAABTCAACAQQAAgMEAADxCAADIwQAAAMAAAHBBAACgwAAADEIAACBBAADAwAAAaMIAAEBBAAAIwgAAKMIAAHBBAAAAQgAAwEEAAFBBAAAwQQAAREIAAHDCAAD4QQAAukIAAJTCAAAUwgAAnMIAAIA_AAA4QgAArMIAAFDBAAD4QQAAFMIAAABBAABAQQAAGEIAABBBAACwwQAAqMEAAExCAAAAQAAAcEEAAAAAAAAIwiAAOBNACUh1UAEqjwIQABqAAgAANL4AADS-AADePgAAcL0AAEC8AACiPgAAoLwAABW_AAC4vQAAUD0AABw-AABMvgAAMD0AAKo-AAAcvgAAFL4AAFQ-AABwPQAAgDsAAOo-AAB_PwAAXL4AAOi9AADIPQAAuL0AAIA7AAD4PQAAcL0AABw-AABUPgAA4DwAAEC8AACAuwAAHD4AALg9AABEvgAAiD0AAI6-AABUvgAAQLwAANi9AABcvgAAVD4AABC9AABwvQAAED0AALg9AABwPQAAZL4AAFC9AADgPAAAPD4AAFw-AAB8PgAAzr4AADA9AABNPwAAdD4AAAQ-AABEPgAAED0AAJg9AACIPQAAVL4gADgTQAlIfFABKo8CEAEagAIAAEC8AABsvgAAML0AADO_AAAkPgAAmD0AAKg9AAAwvQAAyL0AAKI-AACYPQAAoDwAAIC7AADovQAAEL0AAKC8AACIvQAARz8AACy-AABcPgAAHL4AAPi9AAAwPQAAQDwAAIA7AAA0PgAAiD0AABC9AACqPgAAND4AAOA8AACAOwAATL4AAFS-AADgvAAAuD0AAOg9AACYPQAAVL4AACy-AAA8PgAAiD0AAAQ-AAAQvQAA2L0AADA9AAB_vwAAgDsAAKg9AACAOwAADL4AAHC9AACKPgAAqL0AAOA8AACgvAAAUD0AAHC9AACIvQAAgLsAACQ-AABwvQAAiL0AADC9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=gNPb6qOafxs","parent-reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["10984554351240943996"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false}},"dups":{"5873510952185549953":{"videoId":"5873510952185549953","title":"A Differential Equation | \u0007[y\u0007]'=\u0007[y\u0007]/x","cleanTitle":"A Differential Equation | y'=y/x","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=D1PhqYvy-UU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/D1PhqYvy-UU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVzRjem9rdjQwSllSLXc3dTZhWFozZw==","name":"SyberMath","isVerified":true,"subscribersCount":0,"url":"/video/search?text=SyberMath","origUrl":"http://www.youtube.com/@SyberMath","a11yText":"SyberMath. Channel verified"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":571,"text":"9:31","a11yText":"Duration 9 minutes 31 seconds","shortText":"9 min"},"views":{"text":"12,1K","a11yText":"12,1 thousand views"},"date":"23 May 2023","modifyTime":1684854107000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/D1PhqYvy-UU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=D1PhqYvy-UU","reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","duration":571},"parentClipId":"5873510952185549953","href":"/preview/5873510952185549953?parent-reqid=1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL&text=Y.Y.F.","rawHref":"/video/preview/5873510952185549953?parent-reqid=1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL&text=Y.Y.F.","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2142537052207044211":{"videoId":"2142537052207044211","title":"(Ex 1.1.5) Solve a Differential Equation in the Form y'(x)=\u0007[f\u0007](\u0007[y\u0007]): \u0007[y\u0007]'=\u0007[y\u0007]^3, y...","cleanTitle":"(Ex 1.1.5) Solve a Differential Equation in the Form y'(x)=f(y): y'=y^3, y(0)=1","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=iMSJVcov0AE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/iMSJVcov0AE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTlZNeFJNRXd2bzlBUy1KZmg2ZlFGZw==","name":"Mathispower4u","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Mathispower4u","origUrl":"http://www.youtube.com/@Mathispower4u","a11yText":"Mathispower4u. Channel verified"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":356,"text":"5:56","a11yText":"Duration 5 minutes 56 seconds","shortText":"5 min"},"views":{"text":"3,1K","a11yText":"3,1 thousand views"},"date":"23 Sep 2022","modifyTime":1663964012000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/iMSJVcov0AE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=iMSJVcov0AE","reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","duration":356},"parentClipId":"2142537052207044211","href":"/preview/2142537052207044211?parent-reqid=1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL&text=Y.Y.F.","rawHref":"/video/preview/2142537052207044211?parent-reqid=1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL&text=Y.Y.F.","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16424176533042157212":{"videoId":"16424176533042157212","title":"Solving \u0007[y\u0007]'=(\u0007[y\u0007]/x)+2sqrt(y/x), a Differential Equation","cleanTitle":"Solving y'=(y/x)+2sqrt(y/x), a Differential Equation","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=YTqR1pzI8Fs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/YTqR1pzI8Fs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVzRjem9rdjQwSllSLXc3dTZhWFozZw==","name":"SyberMath","isVerified":true,"subscribersCount":0,"url":"/video/search?text=SyberMath","origUrl":"http://www.youtube.com/@SyberMath","a11yText":"SyberMath. Channel verified"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":430,"text":"7:10","a11yText":"Duration 7 minutes 10 seconds","shortText":"7 min"},"views":{"text":"10,7K","a11yText":"10,7 thousand views"},"date":"27 Mar 2022","modifyTime":1648389611000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/YTqR1pzI8Fs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=YTqR1pzI8Fs","reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","duration":430},"parentClipId":"16424176533042157212","href":"/preview/16424176533042157212?parent-reqid=1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL&text=Y.Y.F.","rawHref":"/video/preview/16424176533042157212?parent-reqid=1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL&text=Y.Y.F.","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12137369981386595699":{"videoId":"12137369981386595699","title":"Differential Equation using Laplace Transform: \u0007[y\u0007]''+\u0007[y\u0007]=\u0007[f\u0007](t) , y(0)=1, y'(0)...","cleanTitle":"Differential Equation using Laplace Transform: y''+y=f(t) , y(0)=1, y'(0)=0","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=ebfeq9F-6uo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ebfeq9F-6uo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVk82b1ZvcS1jM2l2a05RWV9FZXNWZw==","name":"Academic Videos (Solved Examples)","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Academic+Videos+%28Solved+Examples%29","origUrl":"http://www.youtube.com/@AcademicVideosSolvedExamples","a11yText":"Academic Videos (Solved Examples). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":135,"text":"2:15","a11yText":"Duration 2 minutes 15 seconds","shortText":"2 min"},"views":{"text":"3,8K","a11yText":"3,8 thousand views"},"date":"13 Nov 2021","modifyTime":1636761600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ebfeq9F-6uo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ebfeq9F-6uo","reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","duration":135},"parentClipId":"12137369981386595699","href":"/preview/12137369981386595699?parent-reqid=1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL&text=Y.Y.F.","rawHref":"/video/preview/12137369981386595699?parent-reqid=1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL&text=Y.Y.F.","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5337693177645279179":{"videoId":"5337693177645279179","title":"Can \u0007[y\u0007]'*\u0007[y\u0007]''=\u0007[y\u0007]'''? (WolframAlpha didn't find all the s...","cleanTitle":"Can y'*y''=y'''? (WolframAlpha didn't find all the solutions)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=q_VbMgjDGkg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/q_VbMgjDGkg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDX1N2WVAwazA1VUtpSl8ybmRCMDJJQQ==","name":"blackpenredpen","isVerified":true,"subscribersCount":0,"url":"/video/search?text=blackpenredpen","origUrl":"http://www.youtube.com/@blackpenredpen","a11yText":"blackpenredpen. Channel verified"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":897,"text":"14:57","a11yText":"Duration 14 minutes 57 seconds","shortText":"14 min"},"views":{"text":"451,7K","a11yText":"451,7 thousand views"},"date":"1 Mar 2019","modifyTime":1551466428000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/q_VbMgjDGkg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=q_VbMgjDGkg","reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","duration":897},"parentClipId":"5337693177645279179","href":"/preview/5337693177645279179?parent-reqid=1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL&text=Y.Y.F.","rawHref":"/video/preview/5337693177645279179?parent-reqid=1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL&text=Y.Y.F.","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7583418887352569599":{"videoId":"7583418887352569599","title":"Differential Equations | Solving \u0007[y\u0007]'=\u0007[y\u0007] five ways!","cleanTitle":"Differential Equations | Solving y'=y five ways!","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=C0KeMyZF0Sk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/C0KeMyZF0Sk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNmpNMFJGa3I0ZVNrelQ1R3gwSE9Bdw==","name":"Michael Penn","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Michael+Penn","origUrl":"http://www.youtube.com/@MichaelPennMath","a11yText":"Michael Penn. Channel verified"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":614,"text":"10:14","a11yText":"Duration 10 minutes 14 seconds","shortText":"10 min"},"views":{"text":"89,5K","a11yText":"89,5 thousand views"},"date":"2 Dec 2019","modifyTime":1575244800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/C0KeMyZF0Sk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=C0KeMyZF0Sk","reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","duration":614},"parentClipId":"7583418887352569599","href":"/preview/7583418887352569599?parent-reqid=1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL&text=Y.Y.F.","rawHref":"/video/preview/7583418887352569599?parent-reqid=1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL&text=Y.Y.F.","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10428101170297185087":{"videoId":"10428101170297185087","title":"Solve by Laplace Transform \u0007[y\u0007]'+\u0007[y\u0007]=\u0007[f\u0007](t), y(0)=5, \u0007[f\u0007](t) = 0 and 3cost","cleanTitle":"Solve by Laplace Transform y'+y=f(t), y(0)=5, f(t) = 0 and 3cost","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=_8xTKsLwQcY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/_8xTKsLwQcY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUU41SnlJZl9vR085MkQ2cUVSMHFWQQ==","name":"math experts","isVerified":false,"subscribersCount":0,"url":"/video/search?text=math+experts","origUrl":"http://www.youtube.com/@mathexperts533","a11yText":"math experts. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":861,"text":"14:21","a11yText":"Duration 14 minutes 21 seconds","shortText":"14 min"},"views":{"text":"3K","a11yText":"3 thousand views"},"date":"11 Jul 2022","modifyTime":1657497600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/_8xTKsLwQcY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=_8xTKsLwQcY","reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","duration":861},"parentClipId":"10428101170297185087","href":"/preview/10428101170297185087?parent-reqid=1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL&text=Y.Y.F.","rawHref":"/video/preview/10428101170297185087?parent-reqid=1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL&text=Y.Y.F.","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"344564103774321108":{"videoId":"344564103774321108","title":"Solving the Differential Equation \u0007[y\u0007]''=(\u0007[y\u0007]')^2","cleanTitle":"Solving the Differential Equation y''=(y')^2","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=sZZq72jX7Ew","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/sZZq72jX7Ew?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVzRjem9rdjQwSllSLXc3dTZhWFozZw==","name":"SyberMath","isVerified":true,"subscribersCount":0,"url":"/video/search?text=SyberMath","origUrl":"http://www.youtube.com/@SyberMath","a11yText":"SyberMath. Channel verified"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":558,"text":"9:18","a11yText":"Duration 9 minutes 18 seconds","shortText":"9 min"},"views":{"text":"37,3K","a11yText":"37,3 thousand views"},"date":"25 Nov 2021","modifyTime":1637860511000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/sZZq72jX7Ew?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=sZZq72jX7Ew","reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","duration":558},"parentClipId":"344564103774321108","href":"/preview/344564103774321108?parent-reqid=1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL&text=Y.Y.F.","rawHref":"/video/preview/344564103774321108?parent-reqid=1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL&text=Y.Y.F.","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5814902216276727843":{"videoId":"5814902216276727843","title":"Iff(x) is a differentiable function for all x gt 0 and lim_(y to x)(y^(2) \u0007[f\u0007](x)-x^(2) \u0007[f\u0007](\u0007[y\u0007]...","cleanTitle":"Iff(x) is a differentiable function for all x gt 0 and lim_(y to x)(y^(2) f(x)-x^(2) f(y))/(y-x)=2...","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=LV5UIe8GIOA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/LV5UIe8GIOA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDY3Y3cHNwR0htTTdBT3l3dUxNMXVmQQ==","name":"Doubtnut","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Doubtnut","origUrl":"http://www.youtube.com/@Doubtnut","a11yText":"Doubtnut. Channel verified"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":366,"text":"6:06","a11yText":"Duration 6 minutes 6 seconds","shortText":"6 min"},"date":"1 Nov 2021","modifyTime":1635724800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/LV5UIe8GIOA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=LV5UIe8GIOA","reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","duration":366},"parentClipId":"5814902216276727843","href":"/preview/5814902216276727843?parent-reqid=1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL&text=Y.Y.F.","rawHref":"/video/preview/5814902216276727843?parent-reqid=1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL&text=Y.Y.F.","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9724142725960996841":{"videoId":"9724142725960996841","title":"Differentiating x^\u0007[y\u0007]=\u0007[y\u0007]^x","cleanTitle":"Differentiating x^y=y^x","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=t38MnYb6MdU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/t38MnYb6MdU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdEFJczFWQ1FyeW1sQW53M21Hb25odw==","name":"Flammable Maths","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Flammable+Maths","origUrl":"http://www.youtube.com/@PapaFlammy69","a11yText":"Flammable Maths. Channel verified"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":535,"text":"8:55","a11yText":"Duration 8 minutes 55 seconds","shortText":"8 min"},"views":{"text":"13,2K","a11yText":"13,2 thousand views"},"date":"27 May 2020","modifyTime":1590537600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/t38MnYb6MdU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=t38MnYb6MdU","reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","duration":535},"parentClipId":"9724142725960996841","href":"/preview/9724142725960996841?parent-reqid=1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL&text=Y.Y.F.","rawHref":"/video/preview/9724142725960996841?parent-reqid=1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL&text=Y.Y.F.","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4520370567750019805":{"videoId":"4520370567750019805","title":"An Infinite Differential Equation?!?: \u0007[y\u0007]=\u0007[y\u0007]'+\u0007[y\u0007]''+\u0007[y\u0007]'''+\u0007[...","cleanTitle":"An Infinite Differential Equation?!?: y=y'+y''+y'''+y''''+...","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=YyOh8F502DE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/YyOh8F502DE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQnBwYUs3QVk1YTh5bE5fbmV5dHdHZw==","name":"Think Thrice Problem Solving","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Think+Thrice+Problem+Solving","origUrl":"http://www.youtube.com/@thinkthriceproblemsolving","a11yText":"Think Thrice Problem Solving. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":265,"text":"4:25","a11yText":"Duration 4 minutes 25 seconds","shortText":"4 min"},"date":"6 May 2023","modifyTime":1683331200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/YyOh8F502DE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=YyOh8F502DE","reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","duration":265},"parentClipId":"4520370567750019805","href":"/preview/4520370567750019805?parent-reqid=1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL&text=Y.Y.F.","rawHref":"/video/preview/4520370567750019805?parent-reqid=1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL&text=Y.Y.F.","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18156309820750021076":{"videoId":"18156309820750021076","title":"Series Solutions Differential Equations \u0007[y\u0007]'' - \u0007[y\u0007]' = 0","cleanTitle":"Series Solutions Differential Equations y'' - y' = 0","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=QQL1TOnsmaQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/QQL1TOnsmaQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcjdsbXpJazYzUFpuQnczYmV6bC1NZw==","name":"The Math Sorcerer","isVerified":true,"subscribersCount":0,"url":"/video/search?text=The+Math+Sorcerer","origUrl":"http://www.youtube.com/@TheMathSorcerer","a11yText":"The Math Sorcerer. Channel verified"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":778,"text":"12:58","a11yText":"Duration 12 minutes 58 seconds","shortText":"12 min"},"views":{"text":"65,9K","a11yText":"65,9 thousand views"},"date":"23 Nov 2014","modifyTime":1416700800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/QQL1TOnsmaQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=QQL1TOnsmaQ","reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","duration":778},"parentClipId":"18156309820750021076","href":"/preview/18156309820750021076?parent-reqid=1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL&text=Y.Y.F.","rawHref":"/video/preview/18156309820750021076?parent-reqid=1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL&text=Y.Y.F.","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15906905152693315987":{"videoId":"15906905152693315987","title":"Higher Order Constant Coefficient Differential Equations: \u0007[y\u0007]'''+\u0007[y\u0007]'=0 and ...","cleanTitle":"Higher Order Constant Coefficient Differential Equations: y'''+y'=0 and y''''-3y'''+3y''-y'=0","host":{"title":"YouTube","href":"http://www.youtube.com/live/is0F0u62IbY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/is0F0u62IbY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOXJUc3ZUeEpueDFETnJEQTNScWE2QQ==","name":"Dr. Trefor Bazett","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Dr.+Trefor+Bazett","origUrl":"http://www.youtube.com/@DrTrefor","a11yText":"Dr. Trefor Bazett. Channel verified"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":678,"text":"11:18","a11yText":"Duration 11 minutes 18 seconds","shortText":"11 min"},"views":{"text":"121,4K","a11yText":"121,4 thousand views"},"date":"28 Mar 2021","modifyTime":1616889600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/is0F0u62IbY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=is0F0u62IbY","reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","duration":678},"parentClipId":"15906905152693315987","href":"/preview/15906905152693315987?parent-reqid=1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL&text=Y.Y.F.","rawHref":"/video/preview/15906905152693315987?parent-reqid=1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL&text=Y.Y.F.","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16787772151588740985":{"videoId":"16787772151588740985","title":"A Differential Equation...y'=(x+y)^2","cleanTitle":"A Differential Equation...y'=(x+y)^2","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Y80lT0hTje8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Y80lT0hTje8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVzRjem9rdjQwSllSLXc3dTZhWFozZw==","name":"SyberMath","isVerified":true,"subscribersCount":0,"url":"/video/search?text=SyberMath","origUrl":"http://www.youtube.com/@SyberMath","a11yText":"SyberMath. Channel verified"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":424,"text":"7:04","a11yText":"Duration 7 minutes 4 seconds","shortText":"7 min"},"views":{"text":"23,2K","a11yText":"23,2 thousand views"},"date":"8 Sep 2021","modifyTime":1631117710000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Y80lT0hTje8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Y80lT0hTje8","reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","duration":424},"parentClipId":"16787772151588740985","href":"/preview/16787772151588740985?parent-reqid=1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL&text=Y.Y.F.","rawHref":"/video/preview/16787772151588740985?parent-reqid=1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL&text=Y.Y.F.","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6278261978726470418":{"videoId":"6278261978726470418","title":"Differential Equation - 1st Order: Reducible to Separable Forms (6 of 7) Example 5: \u0007[y\u0007]'=(\u0007[y...","cleanTitle":"Differential Equation - 1st Order: Reducible to Separable Forms (6 of 7) Example 5: y'=(y-x)/(y+x)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=rPEx5ILE0b0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/rPEx5ILE0b0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaUd4WWF3aEVwNFF5RmNYMFI2MFlkUQ==","name":"Michel van Biezen","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Michel+van+Biezen","origUrl":"http://www.youtube.com/@MichelvanBiezen","a11yText":"Michel van Biezen. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":544,"text":"9:04","a11yText":"Duration 9 minutes 4 seconds","shortText":"9 min"},"views":{"text":"28,6K","a11yText":"28,6 thousand views"},"date":"28 Jul 2015","modifyTime":1438041600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/rPEx5ILE0b0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=rPEx5ILE0b0","reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","duration":544},"parentClipId":"6278261978726470418","href":"/preview/6278261978726470418?parent-reqid=1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL&text=Y.Y.F.","rawHref":"/video/preview/6278261978726470418?parent-reqid=1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL&text=Y.Y.F.","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14382011641096680356":{"videoId":"14382011641096680356","title":"A strange differential equation \u0007[y\u0007]''*(\u0007[y\u0007]-1)=y'","cleanTitle":"A strange differential equation y''*(y-1)=y'","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=XjhaiW4wMkQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/XjhaiW4wMkQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDX1N2WVAwazA1VUtpSl8ybmRCMDJJQQ==","name":"blackpenredpen","isVerified":true,"subscribersCount":0,"url":"/video/search?text=blackpenredpen","origUrl":"http://www.youtube.com/@blackpenredpen","a11yText":"blackpenredpen. Channel verified"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":566,"text":"9:26","a11yText":"Duration 9 minutes 26 seconds","shortText":"9 min"},"views":{"text":"145,6K","a11yText":"145,6 thousand views"},"date":"27 Oct 2019","modifyTime":1572134400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/XjhaiW4wMkQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=XjhaiW4wMkQ","reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","duration":566},"parentClipId":"14382011641096680356","href":"/preview/14382011641096680356?parent-reqid=1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL&text=Y.Y.F.","rawHref":"/video/preview/14382011641096680356?parent-reqid=1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL&text=Y.Y.F.","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5097330284460336749":{"videoId":"5097330284460336749","title":"How to Solve a Differential Equation with Series (x - 1) y'' - xy' + y = 0 with y(0) ...","cleanTitle":"How to Solve a Differential Equation with Series (x - 1) y'' - xy' + y = 0 with y(0) = 2, y'(0) = 6","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=KUTKq9IVEWw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/KUTKq9IVEWw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcjdsbXpJazYzUFpuQnczYmV6bC1NZw==","name":"The Math Sorcerer","isVerified":true,"subscribersCount":0,"url":"/video/search?text=The+Math+Sorcerer","origUrl":"http://www.youtube.com/@TheMathSorcerer","a11yText":"The Math Sorcerer. Channel verified"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2105,"text":"35:05","a11yText":"Duration 35 minutes 5 seconds","shortText":"35 min"},"views":{"text":"57,2K","a11yText":"57,2 thousand views"},"date":"10 Jul 2020","modifyTime":1594339200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/KUTKq9IVEWw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=KUTKq9IVEWw","reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","duration":2105},"parentClipId":"5097330284460336749","href":"/preview/5097330284460336749?parent-reqid=1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL&text=Y.Y.F.","rawHref":"/video/preview/5097330284460336749?parent-reqid=1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL&text=Y.Y.F.","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10984554351240943996":{"videoId":"10984554351240943996","title":"If x^\u0007[y\u0007]=\u0007[y\u0007]^x, then dy/dx=?","cleanTitle":"If x^y=y^x, then dy/dx=?","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=gNPb6qOafxs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/gNPb6qOafxs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTVV1MmxRX2lsTnNiMjZvV3JjNUVOdw==","name":"bprp calculus basics","isVerified":true,"subscribersCount":0,"url":"/video/search?text=bprp+calculus+basics","origUrl":"http://www.youtube.com/@bprpcalculusbasics","a11yText":"bprp calculus basics. Channel verified"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":460,"text":"7:40","a11yText":"Duration 7 minutes 40 seconds","shortText":"7 min"},"views":{"text":"12,4K","a11yText":"12,4 thousand views"},"date":"27 Oct 2024","modifyTime":1730033604000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/gNPb6qOafxs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=gNPb6qOafxs","reqid":"1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL","duration":460},"parentClipId":"10984554351240943996","href":"/preview/10984554351240943996?parent-reqid=1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL&text=Y.Y.F.","rawHref":"/video/preview/10984554351240943996?parent-reqid=1769892947350267-14065981391024510149-balancer-l7leveler-kubr-yp-vla-267-BAL&text=Y.Y.F.","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"0659813910245101497267","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Y.Y.F.","queryUriEscaped":"Y.Y.F.","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}