{"pages":{"search":{"query":"Mathispower4u","originalQuery":"Mathispower4u","serpid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","parentReqid":"","serpItems":[{"id":"1244488277441063726-0-0","type":"videoSnippet","props":{"videoId":"1244488277441063726"},"curPage":0},{"id":"12856663404431278264-0-1","type":"videoSnippet","props":{"videoId":"12856663404431278264"},"curPage":0},{"id":"202511469667169040-0-2","type":"videoSnippet","props":{"videoId":"202511469667169040"},"curPage":0},{"id":"12285261508116448801-0-3","type":"videoSnippet","props":{"videoId":"12285261508116448801"},"curPage":0},{"id":"-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dE1hdGhpc3Bvd2VyNHUK","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","ui":"desktop","yuid":"9233894521769916315"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"6879158505294527693-0-5","type":"videoSnippet","props":{"videoId":"6879158505294527693"},"curPage":0},{"id":"9727704840205014186-0-6","type":"videoSnippet","props":{"videoId":"9727704840205014186"},"curPage":0},{"id":"15899656397355428133-0-7","type":"videoSnippet","props":{"videoId":"10699644751328417358"},"curPage":0},{"id":"4174688637345545674-0-8","type":"videoSnippet","props":{"videoId":"4174688637345545674"},"curPage":0},{"id":"13704733241583277124-0-9","type":"videoSnippet","props":{"videoId":"13704733241583277124"},"curPage":0},{"id":"14847180154965162291-0-10","type":"videoSnippet","props":{"videoId":"14847180154965162291"},"curPage":0},{"id":"-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dE1hdGhpc3Bvd2VyNHUK","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","ui":"desktop","yuid":"9233894521769916315"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"10001200472192442625-0-12","type":"videoSnippet","props":{"videoId":"10001200472192442625"},"curPage":0},{"id":"4135934235563986799-0-13","type":"videoSnippet","props":{"videoId":"4135934235563986799"},"curPage":0},{"id":"9420251073765049840-0-14","type":"videoSnippet","props":{"videoId":"9420251073765049840"},"curPage":0},{"id":"17789233175088748931-0-15","type":"videoSnippet","props":{"videoId":"17789233175088748931"},"curPage":0},{"id":"14206679073241139603-0-16","type":"videoSnippet","props":{"videoId":"14206679073241139603"},"curPage":0},{"id":"8239827654777775425-0-17","type":"videoSnippet","props":{"videoId":"8239827654777775425"},"curPage":0},{"id":"11436747869757813616-0-18","type":"videoSnippet","props":{"videoId":"11436747869757813616"},"curPage":0},{"id":"2925977982335370646-0-19","type":"videoSnippet","props":{"videoId":"8273148347970421467"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Your region Columbus","needRetpath":true}]},{"type":"searchengines","links":[{"label":"Google","url":"//google.com/search?tbm=vid&q=Mathispower4u","logNode":{"name":"link","attrs":{"type":"google"}},"target":"_blank"},{"label":"Bing","url":"//bing.com/videos?scope=video&q=Mathispower4u","logNode":{"name":"link","attrs":{"type":"bing"}},"target":"_blank"}]},{"type":"help","links":[{"label":"Contact us","url":"https://yandex.com/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Help","url":"https://yandex.com/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Tune","url":"https://yandex.com/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"About","url":"//yandex.com/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"License","url":"//yandex.com/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Privacy Policy","url":"//yandex.com/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dE1hdGhpc3Bvd2VyNHUK","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","ui":"desktop","yuid":"9233894521769916315"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Fxmlsearch.yandex.com%2Fvideo%2Fsearch%3Ftext%3DMathispower4u"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"0127662068507111367136","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1457615,0,49;1433082,0,55;1476205,0,76;1472057,0,95;1460214,0,96;1152684,0,92;1456929,0,67;1472029,0,61;1468671,0,83;1474906,0,70;260555,0,83;1478448,0,13;1473958,0,40;1479353,0,44;1463533,0,25;1479385,0,5;1466296,0,96;1464405,0,4;1470514,0,55;124061,0,71;1438211,0,12;89019,0,70;1404017,0,59;1478803,0,51;1002327,0,29;1477435,0,52;56262,0,79;1479369,0,90;45972,0,82;1060666,0,87;151171,0,89;1281084,0,76;287509,0,61;1447467,0,88;785124,0,12;1466397,0,20;1478789,0,30"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Fxmlsearch.yandex.com%2Fvideo%2Fsearch%3Ftext%3DMathispower4u","mordaUrl":"//yandex.com/","videoSearchUrl":"https://xmlsearch.yandex.com/video/search?text=Mathispower4u","settingsUrl":"https://yandex.com/tune/search/","helpUrl":"https://yandex.com/support/video/","legalUrl":"//legal.yandex.com/termsofservice/","feedbackUrl":"https://yandex.com/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","backUrl":"//ya.ru","url":"https://xmlsearch.yandex.com/video/search?text=Mathispower4u","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Mathispower4u: 2 thousand videos found on Yandex","description":"Результаты поиска по запросу \"Mathispower4u\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"Mathispower4u — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"yd4479df39ebca7b46c669972a9cf91d4","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1457615,1433082,1476205,1472057,1460214,1152684,1456929,1472029,1468671,1474906,260555,1478448,1473958,1479353,1463533,1479385,1466296,1464405,1470514,124061,1438211,89019,1404017,1478803,1002327,1477435,56262,1479369,45972,1060666,151171,1281084,287509,1447467,785124,1466397,1478789","queryText":"Mathispower4u","reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"9233894521769916315","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1167408,1202006,1194718,1221235,1228280,1227266,1226860,1246754,1313283,1321224,1300570,1320679,1352408,1342688,1341968,1345362,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1472666,1478181,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"en","user_time":{"epoch":"1769916333","tz":"America/Louisville","to_iso":"2026-01-31T22:25:33-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1457615,1433082,1476205,1472057,1460214,1152684,1456929,1472029,1468671,1474906,260555,1478448,1473958,1479353,1463533,1479385,1466296,1464405,1470514,124061,1438211,89019,1404017,1478803,1002327,1477435,56262,1479369,45972,1060666,151171,1281084,287509,1447467,785124,1466397,1478789","queryText":"Mathispower4u","reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"9233894521769916315","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"0127662068507111367136","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":155,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":false,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"9233894521769916315","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1759.0__78afb7e0ef66aeda09c521d3b89f7cdbe661a72a","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"xmlsearch.yandex.com/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","feedback":"296","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"1244488277441063726":{"videoId":"1244488277441063726","docid":"34-7-8-ZF19FE8611E2EBB62","description":"This video gives a sample of the video library and gives some background on me and future goals.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3274478/43ebae8da5fae4fa6f18de405bd6aa65/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/E2mxHwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","isAdultDoc":false,"relatedParams":{"text":"Mathispower4u Introduction and Information","related_orig_text":"Mathispower4u","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Mathispower4u\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=u51daM89wjA\",\"src\":\"serp\",\"rvb\":\"EqwDChMxMjQ0NDg4Mjc3NDQxMDYzNzI2ChQxMjg1NjY2MzQwNDQzMTI3ODI2NAoSMjAyNTExNDY5NjY3MTY5MDQwChQxMjI4NTI2MTUwODExNjQ0ODgwMQoTNjg3OTE1ODUwNTI5NDUyNzY5MwoTOTcyNzcwNDg0MDIwNTAxNDE4NgoUMTU4OTk2NTYzOTczNTU0MjgxMzMKEzQxNzQ2ODg2MzczNDU1NDU2NzQKFDEzNzA0NzMzMjQxNTgzMjc3MTI0ChQxNDg0NzE4MDE1NDk2NTE2MjI5MQoUMTAwMDEyMDA0NzIxOTI0NDI2MjUKEzQxMzU5MzQyMzU1NjM5ODY3OTkKEzk0MjAyNTEwNzM3NjUwNDk4NDAKFDE3Nzg5MjMzMTc1MDg4NzQ4OTMxChQxNDIwNjY3OTA3MzI0MTEzOTYwMwoTODIzOTgyNzY1NDc3Nzc3NTQyNQoUMTE0MzY3NDc4Njk3NTc4MTM2MTYKEzI5MjU5Nzc5ODIzMzUzNzA2NDYKEzQ4NTkyMDQyMTExNDcxODQwNDQKEzY1NTk2MjQzMjE5ODA2ODU3NDUaFQoTMTI0NDQ4ODI3NzQ0MTA2MzcyNloTMTI0NDQ4ODI3NzQ0MTA2MzcyNmqIFxIBMBgAIkUaMQAKKmhoZWh2ZHRoaHFjZXhrcGJoaFVDTlZNeFJNRXd2bzlBUy1KZmg2ZlFGZxICABIqEMIPDxoPPxPdA4IEJAGABCsqiwEQARp4gQQL8wEAAADxARAE-gT_ARUC8vr1AgIA7QrwAAQAAADp9vr6Cf8AAAQG9wECAAAA9AQOBPcAAQAQAff8BAAAAAYHAf_-AAAADwD7Bv4BAADs9Pf_AgAAABQEEgIAAAAABhQGAv4AAAAMBgEFAAAAABQB-QAAAAAAIAAteBzVOzgTQAlITlACKoQCEAAa8AF__SICrgzr_Qr5-f_rGfoBoQP1ABoi5ACkIxoC3vPKAREFBwDH8P8AEAT7AK4QCgEUJvD-EQINABXSE_8oBCYBCvMYADDQDgExIxYA9-z3AAUeBv_9_gEA6vLxAe4S0f8c5Rv_C-ngAOzd3AAN_jYB_ggQATTkBwTy6wsB9SQUA_IS2v4XDQYD3NsJAOH-CQcO7eUBLSLt_wsI8QYiEhsIFwbyACUK-wIc9OQF8gX8-urjEPk37gH8AwgLAuwV9vbJAw_98vgECQIX_Pz84QoIGeoHBBHx_f_lFvoPFeP7-_wUDAcHA_702hYC_vLo9P4gAC0sVSk7OBNACUhhUAIqzwcQABrAB7fs2L5dd6k8sdTEvF8eHD3zVt2848SHvTlk472y0gs7iQMtvR_4GD6fHCW9WWM6vc0hKb6B_4K9DpMfPZ1Ggj5_Fku8vhLIvM_AeL6TgU28iLYIvbeyJL4pFcM8RNBivDtFXT2Zuiu8Xd-HPKA0xD2m1VC9Ef_WOW-LCL1DRwe6I9gYvU8IfDty0kW934pEvP7VQz1gPnm9fNa1PHglOT6iEQk8dnIAvIDeCj3Umf-7hNRtO1dc_L1_TiG9UWCmu5o_hj3p1UA9hNnfu0fiijz4J6e8LUPaO6nEkD0RSJM8x0SxOxpqBD7iMZE4g92wvPBuYD1bVTu9VthnvKjQb73-NBo6YJmvu9wEqT2Dv989HDGpvDqTNr4ElUw8X4iLvGZlHjwJAp67VhaBu6QlZT2FYFC9Q5oHPel2AD0wYgQ9GwfFO6pUPzzYtqg84BDLuurjxjx68Y890m-hu7nyI7yieeU8GqlSvIBrwr0_Kg-9LIt4PBoppTw47hk9mVupu_h1Oz2cDgk9llwkuypvFz5WGcy998MVu9zNursg9Ge9SbJUuyyRFTxEXE89IzQAPNhJu7uXrqu9xzJYvJ9uBby5wXU8aigcPLEpAT0rcqO8tiJ7PL2pKL15UaU9ULpyugmZVT2qR5o8-QkQvFIby7xxlm08qxdPuyM4hD2BLWW9-HGPOrolwTvAAGc8K-FHu1EhKrt3kE09Jhkcu2x7ez1N4LE8q4qZOstuAb3xHIA8cOmYO3LxYb1EyT89sznWuo832T2daW264QYJuTZXzbwREo48ApX5urodkLwmPpI8RbY5Oik1hbwkH8W9yBgwOaaX-L3zq6m9qjR1OMMR5DzI6OW8YkYUuu56Brx86XK9LoWdOV9_vb0fGDu9CNU3ubsg7Ly3FCa93cbXN5f8tDzV7Vq6hopnuOlMNT3UfYQ7_cEuOTAmQj3pMiu9J0wAuZ4DML0P8io-vcXfuMVZrLzFXK28DNihuMbzrj3kn6k95AJqNp_PO734AIg9sZSoN_Z_jjwALtI8v_PXuIgko7v1ph29SHZEOHJsPbyznWo9KIK2t2vx6b151iS87i9gNrVwNDxhqgm-LbtGt8hfOj7clcI8za9LOMBVhTsi6Sq7zQcDuBjUMj286Ra9HW-duCvcE7xklQK-cT0buDgV6b1SWnQ5JhY7uHtwcj1uSXO9m1m_Nx3jDDxnRt-9aVASuKO5tD3IfYs9gPGDOCmeabx4zZA9oeaauEjUlbwinva8tPgAuDjoXL0AaB68JIxRNyAAOBNACUhtUAEqcxAAGmAR9gBCDT2x4x0U9d_fyP_h7wTSEsHj_9S__y8h4MwYBv7aDSEARsovDaQAAAARAQcKAwC2e-jbAE7vFw3FyxUnAH8bJRSu2xMeuhID-PEQHw6oJQcA2uW8SEQHqzgfTiEgAC1aURc7OBNACUhvUAIqrwYQDBqgBgAA4EAAAAxCAACAQgAAwEAAAGBCAACQQQAAeEIAAJjBAAAcwgAA4MEAAEBBAACCwgAAAMIAANhBAACKQgAAIEEAAFDBAACowgAAsEEAAODBAABQQgAAUMEAAKBBAACmQgAAUMEAAFjCAAAYwgAAwMAAAKxCAABgQQAAuMEAAIBBAADWwgAAiEIAAAhCAABUwgAAQEEAAGRCAAAAQgAAYEIAAIA_AACAvwAAoMAAAHDBAAAQwQAAAMEAAJDBAABAwAAAQEEAAEDAAAC4wgAAwMEAAIjBAAAAQAAAmEIAADBBAACMwgAAosIAALBBAACgQAAAkEEAAIDBAAAQwgAAOMIAADxCAAAQQQAAUEEAABDCAACAwAAAcMEAAKBAAACaQgAAoMAAAKBAAACYwQAAkEEAAAAAAACgQAAAEEIAACDBAABwwgAApEIAABBBAAAQQgAAtsIAAPjBAADQwQAA6EEAADhCAADAwQAAcMEAAOBAAADowQAAiMIAAGBBAACEwgAAAEAAAOhBAABMQgAAFMIAAFDBAADQQQAAlEIAAIDBAADAQQAAQEAAACBBAACUQgAA4MEAALxCAAAUQgAAuMEAAFDCAACoQgAAgL8AADhCAACGwgAAcMEAABBBAABQQQAAWEIAAKjBAACgwQAAOMIAAMBAAACQQQAAgL8AAOhBAADYwQAAgEAAAJBBAABwwQAASMIAAEBBAACYwQAAkEEAAK5CAAAwQQAACMIAABTCAABQwQAAQEAAAJhBAABMwgAAUEEAAFzCAAAgwgAAUEIAALjBAADgQQAAyMEAAKhBAAAUQgAAiMIAAODAAAAswgAAcMEAABBBAABAQAAAVEIAABTCAACSQgAAMMEAAETCAABAwQAAKMIAADRCAACIQQAAmEEAAJBBAAA4wgAAQEAAAATCAABwwQAACMIAAAhCAAB8QgAAIMIAALhBAACeQgAAOMIAAKrCAACEQgAAgD8AAODBAACQQQAA4sIAAADAAAAAwAAAiMEAAIjBAAA8wgAAkMEAAOjBAAAAQAAAoEAAAJjBAAAgQQAAbMIAABzCIAA4E0AJSHVQASqPAhAAGoACAAAQvQAAPL4AAI4-AAAsPgAAmL0AAKI-AAAcvgAAA78AADu_AABwPQAAEL0AALK-AABAvAAAFD4AAEA8AACGvgAAdD4AAFC9AACoPQAA0j4AAH8_AACAOwAAoLwAANi9AAC4vQAA6L0AABS-AADgvAAAoDwAADw-AAB0PgAAUL0AADS-AACoPQAAHL4AAES-AAAQPQAATL4AALq-AACYvQAAML0AAKC8AABsPgAAXL4AAHA9AAAQvQAA6D0AAKK-AACYvQAAsr4AAHS-AACOvgAAoj4AAPg9AAAkvgAAED0AACM_AAAwvQAAcL0AAOo-AABwPQAALD4AABQ-AACgvCAAOBNACUh8UAEqjwIQARqAAgAAZL4AAIg9AAAcvgAA2r4AAOg9AAAEPgAAlj4AAIK-AABwPQAALD4AAPi9AAAcvgAAqD0AABS-AABwPQAAcL0AAFQ-AAAdPwAABL4AAP4-AACYvQAAiL0AAEQ-AACgvAAAoDwAABS-AABQPQAA6D0AAFQ-AAC4vQAA2D0AAHw-AAC2vgAAmD0AAOg9AABwvQAA4j4AAKo-AABEvgAAyL0AAK4-AADgPAAAqL0AADC9AADgPAAArj4AAH-_AAAMvgAA-L0AAJI-AACOPgAAqL0AABC9AAA0PgAAcD0AANg9AACAOwAAEL0AAIi9AAA8PgAAUD0AAMg9AACAOwAAUL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=u51daM89wjA","parent-reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1244488277441063726"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"2123325562"},"12856663404431278264":{"videoId":"12856663404431278264","docid":"34-11-10-ZF4526B646F3EF34B","description":"This video explains how to determine the correct graph for a square root function that is a transformation of the basic square root function. https://mathispower4u.com...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/400250/8f1439d2704b5ad0e2621f90e14943e3/564x318_1"},"target":"_self","position":"1","reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","isAdultDoc":false,"relatedParams":{"text":"Transformations of the Square Root Function: Matching Functions to Graphs (Basic)","related_orig_text":"Mathispower4u","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Mathispower4u\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=9E7IW7SdNow\",\"src\":\"serp\",\"rvb\":\"EqwDChMxMjQ0NDg4Mjc3NDQxMDYzNzI2ChQxMjg1NjY2MzQwNDQzMTI3ODI2NAoSMjAyNTExNDY5NjY3MTY5MDQwChQxMjI4NTI2MTUwODExNjQ0ODgwMQoTNjg3OTE1ODUwNTI5NDUyNzY5MwoTOTcyNzcwNDg0MDIwNTAxNDE4NgoUMTU4OTk2NTYzOTczNTU0MjgxMzMKEzQxNzQ2ODg2MzczNDU1NDU2NzQKFDEzNzA0NzMzMjQxNTgzMjc3MTI0ChQxNDg0NzE4MDE1NDk2NTE2MjI5MQoUMTAwMDEyMDA0NzIxOTI0NDI2MjUKEzQxMzU5MzQyMzU1NjM5ODY3OTkKEzk0MjAyNTEwNzM3NjUwNDk4NDAKFDE3Nzg5MjMzMTc1MDg4NzQ4OTMxChQxNDIwNjY3OTA3MzI0MTEzOTYwMwoTODIzOTgyNzY1NDc3Nzc3NTQyNQoUMTE0MzY3NDc4Njk3NTc4MTM2MTYKEzI5MjU5Nzc5ODIzMzUzNzA2NDYKEzQ4NTkyMDQyMTExNDcxODQwNDQKEzY1NTk2MjQzMjE5ODA2ODU3NDUaFgoUMTI4NTY2NjM0MDQ0MzEyNzgyNjRaFDEyODU2NjYzNDA0NDMxMjc4MjY0aq8NEgEwGAAiRRoxAAoqaGhlaHZkdGhocWNleGtwYmhoVUNOVk14Uk1Fd3ZvOUFTLUpmaDZmUUZnEgIAEioQwg8PGg8_E6wCggQkAYAEKyqLARABGniB8vr7B_8CAPD6C__7AgABGPvxBPUBAQDr-PvzAv8BAPv5CvoBAAAA_QL7BgEAAAABBfsD_f4BAAX5-wryAP8ACQ0G-_oAAAAMDu8C_wAAAOz3Av8DAAAADQEKBQAAAAD8CAEB_P8AAP4IAwsAAAAAFPwABQABAAAgAC0jf9g7OBNACUhOUAIqcxAAGmABEwAw_grb3ff95xPsxxb9_DbfBunt_wDZABkv8d4PA9-55QsAIt4CCsMAAADtCPEkHADjTRzX6yAGDu-28hQKFH8RHP4EBAL78xgEJy4Y8v3kBRAA7wUU_wD330wKRB0gAC2Pf1Y7OBNACUhvUAIqrwYQDBqgBgAAMMIAAODBAAAgwQAAfMIAAABAAAAwQQAAlkIAABRCAACgQQAAAMAAAIA_AACswgAAEMEAAExCAAAQQgAAIEIAAKDAAAAQwgAAsEEAAAAAAABgQQAAwMAAAIC_AACIwQAANEIAAEzCAADYQQAAGMIAAGDCAABwQQAA8MEAACxCAADwwQAAgL8AAKzCAAA4QgAAgL8AALRCAADwwQAAMEEAACBCAAAkQgAANEIAAMBAAACQQQAAqMEAAODAAAAAQgAA2EEAABxCAACoQQAAEMEAAADAAAD4wQAAgEEAAIhBAACmwgAAFEIAAEDAAAAoQgAAyEEAAJDCAACSwgAAqsIAAABBAABUwgAAEMIAAFDCAADgwAAAiMEAAJhCAADoQQAADMIAANBBAADowQAACMIAAHDCAABAQQAAqEIAAABCAABkwgAA0kIAADzCAACgQAAAOEIAAIBBAABgQgAAQMEAAMDAAADowQAAUMEAAKhCAABUwgAAAAAAAMhBAADEwgAAEMIAAIbCAACwQQAAAEIAAKBAAACAQAAAQEAAAIBAAAAQwgAAuEEAAMDAAAAsQgAAiMEAAChCAADIwQAAgkIAAFzCAABgQQAAwMAAABxCAABgQgAAKMIAAJzCAAAswgAAcEEAAATCAACAwAAAIEIAACBCAACAwQAAUMEAAGjCAADIwQAAIEIAAGjCAABAQAAALMIAAKDAAACWwgAAoEEAAKDBAAD4wQAAgMEAAIC_AABgwgAATMIAAKBAAAAAQQAA4EEAAGBBAABMwgAAcEIAAIxCAAA8QgAAYMIAAEDAAACIQQAAAEAAAKhBAAAgwgAAgsIAAODAAACQwQAA8EEAAMDBAABAQAAAEMEAAJrCAAAAQAAAMEIAADRCAACAwQAAJEIAAEDBAADAwAAAkEEAACjCAABowgAAIMIAANDCAAAAwQAAgMIAAABBAADgwAAAoMEAAADBAAAUwgAAuEEAAAhCAADYwQAAjMIAADzCAAA8QgAAIEEAAHTCAACgQQAAsEEAAJhBAADgQAAA6EEAABRCAACYwQAA-EEAAGDBIAA4E0AJSHVQASqPAhAAGoACAAB0vgAAur4AAKA8AADYvQAAVD4AAL4-AADgvAAAI78AAHy-AABAPAAAor4AAGy-AAAsvgAABD4AAOC8AACAuwAA4DwAAAy-AADYvQAA3j4AAH8_AACYPQAABD4AACy-AAAMvgAA4DwAAGQ-AACYvQAA-L0AAAw-AAAsPgAAyj4AABS-AACYPQAAhj4AAPi9AADmPgAAUD0AAGy-AAAUPgAArr4AAKA8AAAcPgAAcD0AABA9AACYPQAAoDwAAKi9AACAuwAAgr4AAKC8AABcvgAAij4AANI-AAC4PQAA4LwAAB8_AABUvgAAED0AAEQ-AAAkvgAAXD4AAJg9AABwvSAAOBNACUh8UAEqjwIQARqAAgAAJL4AAIg9AAAcvgAAGb8AAPi9AACgvAAAlj4AAHA9AADoPQAAML0AABC9AADIvQAA2L0AAJq-AABAvAAAmD0AABw-AAALPwAAuL0AALI-AADgvAAAyD0AAIC7AAAUvgAAqL0AABQ-AABAvAAAUD0AAAy-AAAwPQAAuD0AAFw-AACqvgAATL4AABC9AADgPAAAnj4AADw-AADCvgAAQLwAADQ-AACIvQAAcL0AAFQ-AAAUPgAAHD4AAH-_AACSvgAARL4AAOg9AACGPgAAmD0AADC9AACIvQAAwj4AAIg9AAAQvQAAEL0AABC9AAAwPQAAHD4AAKg9AABQvQAADL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=9E7IW7SdNow","parent-reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["12856663404431278264"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"202511469667169040":{"videoId":"202511469667169040","docid":"34-9-6-Z7C4AAB585A783988","description":"derivative...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1015806/479fa027083b4991d9c5e3d54fe84841/564x318_1"},"target":"_self","position":"2","reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","isAdultDoc":false,"relatedParams":{"text":"Determine a Taylor Series for a Rational Function. f(x)=4/x","related_orig_text":"Mathispower4u","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Mathispower4u\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=gzp5aMeXg7M\",\"src\":\"serp\",\"rvb\":\"EqwDChMxMjQ0NDg4Mjc3NDQxMDYzNzI2ChQxMjg1NjY2MzQwNDQzMTI3ODI2NAoSMjAyNTExNDY5NjY3MTY5MDQwChQxMjI4NTI2MTUwODExNjQ0ODgwMQoTNjg3OTE1ODUwNTI5NDUyNzY5MwoTOTcyNzcwNDg0MDIwNTAxNDE4NgoUMTU4OTk2NTYzOTczNTU0MjgxMzMKEzQxNzQ2ODg2MzczNDU1NDU2NzQKFDEzNzA0NzMzMjQxNTgzMjc3MTI0ChQxNDg0NzE4MDE1NDk2NTE2MjI5MQoUMTAwMDEyMDA0NzIxOTI0NDI2MjUKEzQxMzU5MzQyMzU1NjM5ODY3OTkKEzk0MjAyNTEwNzM3NjUwNDk4NDAKFDE3Nzg5MjMzMTc1MDg4NzQ4OTMxChQxNDIwNjY3OTA3MzI0MTEzOTYwMwoTODIzOTgyNzY1NDc3Nzc3NTQyNQoUMTE0MzY3NDc4Njk3NTc4MTM2MTYKEzI5MjU5Nzc5ODIzMzUzNzA2NDYKEzQ4NTkyMDQyMTExNDcxODQwNDQKEzY1NTk2MjQzMjE5ODA2ODU3NDUaFAoSMjAyNTExNDY5NjY3MTY5MDQwWhIyMDI1MTE0Njk2NjcxNjkwNDBqrw0SATAYACJFGjEACipoaGVodmR0aGhxY2V4a3BiaGhVQ05WTXhSTUV3dm85QVMtSmZoNmZRRmcSAgASKhDCDw8aDz8TgwOCBCQBgAQrKosBEAEaeIHqBQL6_gIABPURBPsJ_AL_E_cG9_7-APL7_fwHAf8A5wH9__r_AAD6CPoQAgAAAAQD-voE_QEACgUACQQAAAAF_wIO9QAAAAAX9gf-AAAA-wAD_QP_AAD6CP_9_wAAAOv__wP9AP8A-QIEBwAAAAAC9_PzAAAAACAALbqI1Ts4E0AJSE5QAipzEAAaYAwQACQEFuDk_QXsDP3bExb-Cw_yBO0ABccABxjq7hb7-9gACAAt8yH0zwAAAPcQ-hcNAOE9K_3ZNQIM9APU_eYQfwUf8QIO9_v49xn1BQbwFM8QCwDSBBkKE9vuACoLHyAALQNlfjs4E0AJSG9QAiqvBhAMGqAGAADowQAAmMIAADhCAAAkwgAAAEIAAJhBAACOQgAAYEEAAIC_AAAAQQAAYMEAACzCAAD4wQAAAEIAADBBAAAUQgAAiMEAAAjCAAAAwAAAQEEAALjBAABwwQAAMMEAAMDBAADwQQAAUMEAAHBBAAAMwgAAQEAAAKhBAACMwgAAQEIAANDBAABwwQAAtsIAACRCAAB8QgAAtEIAABjCAADowQAAWEIAACBBAACwwQAAQMEAALxCAAB8wgAALMIAAEhCAABgwQAAiEEAAADCAACIwQAAwEAAAKBAAAA4QgAAGEIAAKTCAAAYQgAAYEEAAGhCAAAIQgAAvMIAALjBAADQwgAAIEEAAMTCAADIwQAAlMIAAKBAAAAkwgAALEIAAKBBAADcwgAA0EEAAODBAAAwwgAAIMEAAKDAAACQQQAAkEEAAFTCAACmQgAAgMEAAOBAAAAAQAAAcEEAAARCAACQwQAAAEEAAOjBAADgwQAAREIAAEjCAAAYQgAAREIAALDBAAAQwgAAFMIAAARCAABAQgAAPMIAABzCAAAYQgAAAEEAAFDBAACQQQAAqEEAAKDAAACoQQAAgkIAAJhBAABAQgAACMIAADBCAABEwgAAHEIAAHxCAAAAwQAAzMIAALjBAAAwQQAA-MEAAIA_AABIQgAAQEEAAAAAAADQQQAAWMIAAABAAADwQQAAEMIAAMjBAADAwQAAlkIAAKDAAAAoQgAAUMEAAJBBAACQwgAAoEAAAODBAABUwgAA6EEAAADCAADwQQAAMEEAADTCAADgQAAA0EEAAABAAAB4wgAAPEIAAEBBAADYQQAANEIAAIDBAAB4wgAASMIAADzCAAAAwAAAgsIAAAxCAAAAQQAAeMIAAEDAAABgQQAAgEEAAKJCAACgQQAA4MAAABTCAACYQQAAMEEAAHzCAAB8wgAAZMIAAIjBAAAAwAAA-EEAAEDAAAAwwQAA4MEAABTCAACgwQAAeEIAAEDAAABMwgAAnsIAAABCAADoQQAAyMEAAADBAAAEQgAAwMAAAADAAADwQQAAEEEAAJjBAACwQQAA8MEgADgTQAlIdVABKo8CEAAagAIAAMg9AADYPQAAoj4AAKC8AADIvQAAML0AAMi9AADyvgAAZL4AALi9AAA8PgAAiL0AAHA9AAAMPgAAUL0AAOC8AABEPgAAED0AAKA8AACWPgAAfz8AAAw-AABAvAAADD4AAKC8AABwvQAAoDwAALi9AAAMvgAAcD0AAHA9AABQvQAAUL0AAJi9AABUPgAAQDwAAMg9AACOvgAAlr4AAJ6-AABMvgAAML0AAPg9AACgPAAAPL4AAGy-AAB0PgAAuL0AAKg9AACKvgAAuD0AACw-AACoPQAAfD4AAOi9AAAwvQAAAT8AAHC9AAB0PgAAQLwAAIg9AACAOwAAPD4AABS-IAA4E0AJSHxQASqPAhABGoACAABwvQAAcL0AAJi9AAA5vwAABL4AAOA8AACqPgAAcL0AAEC8AAB8PgAAmD0AACS-AAAUPgAABL4AABA9AAC4vQAAcL0AACE_AACIPQAAkj4AAMi9AAAkvgAA6D0AAOC8AACYPQAAoLwAAIg9AACAuwAAHD4AAKA8AABQvQAAmD0AAI6-AABMvgAA2L0AADS-AAAQPQAAlj4AADS-AABAPAAAPD4AAOg9AAAEPgAAQDwAAAQ-AABAvAAAf78AAFA9AAAMPgAAMD0AAPg9AACIvQAAND4AAJi9AACoPQAAED0AAIA7AABAPAAAHL4AABy-AACGPgAAiD0AAOi9AABEviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=gzp5aMeXg7M","parent-reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["202511469667169040"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"12285261508116448801":{"videoId":"12285261508116448801","docid":"34-0-1-Z603645781C6164F3","description":"This video explains how to parameterize a circle centered at the origin with a radius of two that is traced out clockwise starting along the positive y-axis. https://mathispower4u.com...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2909972/41955b21dcc68b9992811ad31b5a3aa0/564x318_1"},"target":"_self","position":"3","reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","isAdultDoc":false,"relatedParams":{"text":"Parameterize a Circle with Special Conditions","related_orig_text":"Mathispower4u","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Mathispower4u\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=yuSXejBKxgE\",\"src\":\"serp\",\"rvb\":\"EqwDChMxMjQ0NDg4Mjc3NDQxMDYzNzI2ChQxMjg1NjY2MzQwNDQzMTI3ODI2NAoSMjAyNTExNDY5NjY3MTY5MDQwChQxMjI4NTI2MTUwODExNjQ0ODgwMQoTNjg3OTE1ODUwNTI5NDUyNzY5MwoTOTcyNzcwNDg0MDIwNTAxNDE4NgoUMTU4OTk2NTYzOTczNTU0MjgxMzMKEzQxNzQ2ODg2MzczNDU1NDU2NzQKFDEzNzA0NzMzMjQxNTgzMjc3MTI0ChQxNDg0NzE4MDE1NDk2NTE2MjI5MQoUMTAwMDEyMDA0NzIxOTI0NDI2MjUKEzQxMzU5MzQyMzU1NjM5ODY3OTkKEzk0MjAyNTEwNzM3NjUwNDk4NDAKFDE3Nzg5MjMzMTc1MDg4NzQ4OTMxChQxNDIwNjY3OTA3MzI0MTEzOTYwMwoTODIzOTgyNzY1NDc3Nzc3NTQyNQoUMTE0MzY3NDc4Njk3NTc4MTM2MTYKEzI5MjU5Nzc5ODIzMzUzNzA2NDYKEzQ4NTkyMDQyMTExNDcxODQwNDQKEzY1NTk2MjQzMjE5ODA2ODU3NDUaFgoUMTIyODUyNjE1MDgxMTY0NDg4MDFaFDEyMjg1MjYxNTA4MTE2NDQ4ODAxaq8NEgEwGAAiRRoxAAoqaGhlaHZkdGhocWNleGtwYmhoVUNOVk14Uk1Fd3ZvOUFTLUpmaDZmUUZnEgIAEioQwg8PGg8_E-4BggQkAYAEKyqLARABGniB_v_4__sGAPH6Cv_7AgAB9vn7_Pr-_gD2APX1AgL_APUJCgQJAAAA_wUB_wUAAAD6-_j6Av4AAA0N_f74AAAAEPIB_AMAAAAK__v4_wEAAPn5_gYD_wAA__MH_v8AAAD3DgEDAQAAAP0MAPoAAAAADPYABQAAAAAgAC3ZbeQ7OBNACUhOUAIqcxAAGmDyDwD_DRj16Rs8697b2yLd-B-__KIM_yXjANMm7uwFCfHWEkT_INAC768AAAAq7RgWIgDUaAT15BgKHiSG8PQoH38BHckx_QX1J__pNjT86-3u6TIA5Ab9ABXS4Sj9RSUgAC0K6S87OBNACUhvUAIqrwYQDBqgBgAAQEEAAMDBAAAwQQAA2MEAAEBBAADAwAAAiEIAACBBAABAQAAAYEIAAMBAAABcQgAAoMAAAHRCAACCQgAAMEIAAPjBAABcwgAAMEEAAODBAACYQQAAAEAAAOhBAADQwQAAHEIAAPjBAACIQQAA8MEAAMBAAABEQgAA6MEAAFhCAACSwgAAAMIAAHDCAAAgQQAAJEIAAKZCAACAQAAAAEIAAKpCAAAsQgAAYEEAAEDAAABAQgAAmMIAAABAAABMQgAAsEEAAOjBAAAkwgAACEIAABxCAAAgwgAAJEIAAFhCAACiwgAAfEIAAOhBAAAIQgAAUMEAAHzCAADowQAAWMIAABRCAACawgAAAEAAAKbCAADowQAAdMIAAJpCAAAoQgAAWMIAAKBAAACAPwAACMIAACDBAABwwQAA4EEAACBCAABYwgAAbEIAABzCAACgwQAAuEEAAMBBAACQQgAAQMEAAKjBAAAowgAAFMIAAExCAABQwgAAkMEAAHxCAADGwgAAkEEAAMDAAAAQQQAAGEIAAJbCAADAwQAAUEEAABDBAACQQQAAUEEAAIhBAACgwAAAoMAAAIRCAABgQQAAqEEAAKjCAADYQQAA6MEAABDBAAC4QQAAgMEAAJzCAABMwgAAPMIAAFjCAACYQQAAyEEAAJjBAACAwAAASEIAAIbCAADowQAAXEIAAFjCAAA0wgAAKMIAABBCAADgwQAAREIAACDBAAAwQQAADMIAAPhBAADQwQAAAMEAABBBAAAAwAAAhkIAACxCAADAwAAAGEIAABhCAABQwQAARMIAANhBAAAAAAAAjkIAABxCAAAAwgAAPMIAAAAAAABEwgAAIMEAAMDAAADAQQAAMMEAABjCAACIQQAA-EEAAKDAAACIQQAALEIAABTCAAAYQgAAoMEAAAAAAACCwgAAJMIAANjBAADAwQAA-MEAAIC_AADYwQAAAMAAAADAAAAIwgAAXEIAAJRCAABMwgAAxsIAACDCAAAgQgAAXEIAAMBAAAAAQgAAQEIAAOBAAACIwQAAAEEAAAjCAACgQAAAJEIAAMDBIAA4E0AJSHVQASqPAhAAGoACAACgPAAAir4AAII-AADgvAAAMD0AALg9AADgPAAAE78AAJK-AADIPQAABL4AALi9AABwPQAAhj4AAIi9AACgPAAA6D0AAHC9AACoPQAAHz8AAH8_AABwPQAAnj4AABS-AAAUPgAAQDwAAIC7AABQPQAAcL0AAFQ-AAC4PQAAFL4AAAS-AABsPgAA2D0AADC9AACAOwAAPL4AAOK-AABUvgAAgr4AAFA9AACePgAAbL4AAES-AADIvQAA6D0AAPi9AAD4PQAA6r4AAJK-AACoPQAA2D0AAJo-AACmvgAAmL0AAC0_AADovQAAcD0AALI-AADovQAABD4AAAw-AABwvSAAOBNACUh8UAEqjwIQARqAAgAAEL0AAOg9AAD4vQAALb8AAIC7AACAOwAAcD0AAAy-AAD4vQAA1j4AAEw-AAD4vQAAEL0AAGy-AAAUvgAAUL0AAOg9AAAjPwAA6L0AAKY-AABQPQAAJD4AAKA8AADIvQAAgDsAAFA9AAAwvQAABD4AAJi9AABEPgAALD4AALg9AAAkvgAAUD0AABC9AAD4vQAAyD0AACQ-AACevgAAoLwAAHQ-AACovQAANL4AAHA9AAAkvgAAbD4AAH-_AACoPQAABL4AAIA7AAC4PQAAEL0AAKg9AAAQPQAAcD0AAFA9AACAOwAA6D0AAIC7AAAMvgAA2L0AAIC7AABAPAAA4DwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=yuSXejBKxgE","parent-reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["12285261508116448801"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"6879158505294527693":{"videoId":"6879158505294527693","docid":"34-9-11-ZEAC7930174F9CC51","description":"improper, integral, limit, notation, evaluate, substitution, calculus, james, sousa, mathispower4u...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/750133/e4681d10a7236ad588f13a1ab8934261/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/0R2yBQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","isAdultDoc":false,"relatedParams":{"text":"Improper Integral with Substitution: e^(-sqrt(x))/sqrt(x)","related_orig_text":"Mathispower4u","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Mathispower4u\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=8InXwYc8b9g\",\"src\":\"serp\",\"rvb\":\"EqwDChMxMjQ0NDg4Mjc3NDQxMDYzNzI2ChQxMjg1NjY2MzQwNDQzMTI3ODI2NAoSMjAyNTExNDY5NjY3MTY5MDQwChQxMjI4NTI2MTUwODExNjQ0ODgwMQoTNjg3OTE1ODUwNTI5NDUyNzY5MwoTOTcyNzcwNDg0MDIwNTAxNDE4NgoUMTU4OTk2NTYzOTczNTU0MjgxMzMKEzQxNzQ2ODg2MzczNDU1NDU2NzQKFDEzNzA0NzMzMjQxNTgzMjc3MTI0ChQxNDg0NzE4MDE1NDk2NTE2MjI5MQoUMTAwMDEyMDA0NzIxOTI0NDI2MjUKEzQxMzU5MzQyMzU1NjM5ODY3OTkKEzk0MjAyNTEwNzM3NjUwNDk4NDAKFDE3Nzg5MjMzMTc1MDg4NzQ4OTMxChQxNDIwNjY3OTA3MzI0MTEzOTYwMwoTODIzOTgyNzY1NDc3Nzc3NTQyNQoUMTE0MzY3NDc4Njk3NTc4MTM2MTYKEzI5MjU5Nzc5ODIzMzUzNzA2NDYKEzQ4NTkyMDQyMTExNDcxODQwNDQKEzY1NTk2MjQzMjE5ODA2ODU3NDUaFQoTNjg3OTE1ODUwNTI5NDUyNzY5M1oTNjg3OTE1ODUwNTI5NDUyNzY5M2qIFxIBMBgAIkUaMQAKKmhoZWh2ZHRoaHFjZXhrcGJoaFVDTlZNeFJNRXd2bzlBUy1KZmg2ZlFGZxICABIqEMIPDxoPPxPJAoIEJAGABCsqiwEQARp4gfMJBwj_AgD9AgUC-gb-AgsM9vf2AAAA8QEC_P4BAADq-QUF_P8AAPcFAgIAAAAAAv799vP9AQADAwQC_AAAAAno9_z9AAAAAgv3Bv4BAADu_vT5AgAAAAoG_fwAAAAA_g0FCgEAAAAGDAb8AAAAAAX9AvkAAAAAIAAt2X3WOzgTQAlITlACKoQCEAAa8AF_KPr_09rMAK0ezP_8MAEBpy0k__gf7wCsExQB1c7FAeIr9__0BN7_9x4XALUp-P8Y1_H_79zXADrd_AAO4PMA0xf0AS3o7QBF4Aj_8OIS_swhHP7M0BIB_cfeAAQj2v4T6Sj9CybXAQAG4AQP_j4BBP9DACbuAAHcywwB1-v6-_f4xv7vAg0C8N3_-cf-HwEeyv3-D_8V_OcZ8_ju6QH82_kQ9x0b4f0S6_X_5PwC-gHi6AbvB_0DBAcs_-oY9fTm4h7_5-j-AhjqCgE72wD4yP3e_Qnu9Qjv8P_z5fD1BRnl9fPQAAH8DPXuD_gL9_IgAC355xQ7OBNACUhhUAIqzwcQABrAB4802L4_LZC8HiwIvb06BTvWBAy9lXDXvO8tdjwZR4s95upHvH7Iaz52aB29jexKPOdGor3rAAi7Wn_LvMuAMz7m0Yi9mGIzPIbjCb7fIPU8rAEqvUHII72Daw69ZOlDPP8sTL2E1Tg9tdm_ux0A8T311RW9-Z4xvamqyLuyXSa9X8EMvdxqGTr1EVi9E3xYvViTor0P5wu9eM47PKGjsDw2YOu8qtqLO0E_uD3hO4u9bTrCvH3PqL322gc89EAYvELS5zwxw5A8yCWOvKREwbyVkk89UdLovLIokbs-5NI8_s3wvJVShj0jMcE8u2VivGKTqTtxKsi9yGqpvDJ9qr33iYg9cXxlu69duj2N64Q8lXf6PK7XBL4Nnz497EWZvGGIPD0hySy9Yd2dOwtdiT0jmL89WMmHvN5atj2PJg09tt9zOzEtRb0kYLY79LCGPAcp2D3_WfO8oImwvMesuD00iZU8SmoZPMHWNrxLHK49tD16vMpsoD0kCWe8ZOSRvD-8-Dx5RYs8DrNhPAUjpT3WAju-SeWaOii6vr2m7Lm9Q6SNO93Bfj28uyQ9iHuRvE7wzT1mM-e9_1cAPD-d9Tm7e0C9ybDpOzeq7jwqmVK9C0drPFACpr16H0I9BMFKu_x_Jr0ASm09kpbnu6ocibwrpgI-DuoNuecH5Lxol4-9mbUYuwuosT3xw_e8mIz7uZgyAD4Wf0A9LT-1t2u7hD37s3q8N7lnu8rINDvEbZ-7aGxYu5Fhpb0lRoq99Ki7ORWzdD1AYK-9jWJ-ONWTeTxrFp48SSdYOZG6eL0onB09xwEJuDW2d70xdqc8a9unuVxUC72cFfG93J51OVTRTj2OUP28N5fbuRxF8TzyeYW8dh8_uUoLF74K3Jq9qarhtlWEO71UrQU9SBacuGlhw7vvNpQ8cku5ODF_YD3GK5o82Ar9OJ2vA72OCIS7vxYlOQ93Wr0tRvg8XBwWOEyoAD3H8J29_u4wOZ_xcTul2AE-qK4xuRW-KL0v2R-8oLw-uOU6lz1S_qQ8UEn8tvX_QzvHeWS9r2O1t8jrAT5W0YQ88F6DuMrhA74Q1x48l_1ON8a_b70Exhq9W2mbuEySQj3dmB66cUwHOPcoszt6MRk92XrcOKXTvz3vrH29oCwOuawbT71wAGK9cfqiuNVdmbwRl4K9B3EDuKZ_6b2MZLQ9PCjpOLMxBrsIr729HH2mt8r0cD0i4Ss-8cuKOCmeabx4zZA9oeaauLQWwL1UNLs9PF-yOM9r7LtoUnG7dlnRNyAAOBNACUhtUAEqcxAAGmAP9AAe8TjsBBgq9we7BRm-7PfZ-t30_-reAAEaBgYY7sLOEwkAJ8MK16sAAAAiGQkv6QAZbBTaChbuFgvzgfQiIHz1HkWt6jTj690yDxXfJxbyITsAzhuxChDP0EQXAC4gAC00TSc7OBNACUhvUAIqrwYQDBqgBgAAHEIAAKDAAAC-QgAApMIAAEBBAACYQQAAVEIAABDBAAAAAAAAiEEAALjBAACgwQAA6MEAAADBAACwQQAAgEAAADBBAAAAAAAAwEEAABjCAACowQAAgMEAAHDCAAAUQgAA2MEAABTCAADgwQAA8MEAAFxCAAC4QQAAMMIAAABAAACewgAAyEEAALrCAAD4QQAAmMEAAP5CAADgwQAALEIAACBBAADgwAAAwEAAABDBAACIQgAAgMIAABDBAABEQgAAKEIAAMhBAAAMwgAAqMEAAEBBAADwQQAAIEEAAPBBAAAAwwAAMEEAANBBAAAMQgAAEEIAAKDCAAAwwgAAeMIAAIA_AACCwgAAmMEAAHDBAAAQwgAAVMIAAGhCAABUQgAAMMIAAIBCAABcwgAAJMIAAKBAAABowgAAMEEAAMBAAAAQwQAAhkIAAEDBAAAoQgAAuMEAAChCAAAAQgAAAMEAAOBAAACYwQAAgMAAAOhBAAAMwgAA-MEAALBBAAAwwgAAoEAAAHDBAAAAQgAAokIAAIrCAACAQQAAHEIAADjCAABUwgAAwMAAAIDBAAAUQgAAFMIAACxCAADoQQAAXEIAADTCAAA0wgAAAEAAAGxCAACAvwAAGMIAANDBAAAcwgAAgMAAAIjCAABAwQAAgD8AAMDAAACAQQAAgL8AAHDCAABAwQAAqEEAAAAAAAAowgAAkMEAAEhCAADAQAAAMEIAANhBAAAwQgAAGMIAAGTCAADQwQAA0EEAADRCAAAIwgAA8EEAAOBBAAAAwgAAAMIAAEBBAAAMwgAAAEEAACRCAABMQgAAAEAAAKDAAACgwQAALMIAAHTCAACgwgAAyMEAAFDCAADAQQAAgEAAAODBAAAQwgAAQEIAAJDBAADOQgAAjEIAAHBBAAA8wgAAEEIAAABAAABAwQAAisIAAHDBAADgQAAAcMEAAOhBAABIQgAACMIAAHTCAADgwQAAwMAAAIBCAACYwQAALMIAABzCAABAwAAAoMEAAAhCAAAgwgAAwMAAAFTCAAD4QQAATEIAALjBAAD4wQAAEEEAAAzCIAA4E0AJSHVQASqPAhAAGoACAABAvAAAoLwAACw-AAB0PgAADL4AAGQ-AACOvgAAur4AAIA7AAC4PQAAyD0AAJg9AACIPQAA6D0AADy-AAAwvQAAND4AAEA8AADYvQAAoj4AAH8_AACgPAAAgr4AALg9AAAsvgAA4DwAANi9AAD4vQAAgDsAAMg9AADgvAAAcD0AAFS-AAAkPgAAMD0AAJi9AADYPQAADL4AAGy-AACSvgAAEL0AAFC9AACovQAAQDwAAFA9AACIvQAAUD0AAEC8AADYvQAArr4AALg9AAAsPgAAVD4AABQ-AAC6vgAAEL0AABM_AACIPQAALD4AAII-AACovQAAdL4AAEC8AAAUviAAOBNACUh8UAEqjwIQARqAAgAARL4AADA9AAAwvQAAIb8AAFA9AAC4PQAA6D0AAHC9AAAwvQAAlj4AAKC8AABAvAAAiD0AALi9AABQvQAAQDwAAOi9AAA1PwAAJL4AAEw-AAAwPQAAfL4AADQ-AAAQvQAAuD0AABw-AAA8vgAAUD0AAIg9AADgvAAAUL0AAHA9AADgvAAAhr4AAFC9AABwvQAAyD0AAKg9AACgvAAARL4AAFQ-AABQvQAA2D0AAES-AABMPgAANL4AAH-_AAAQPQAABD4AAFQ-AACOPgAAEL0AABQ-AADYPQAADL4AAEC8AAC4vQAAiL0AAAS-AACoPQAAPD4AADC9AAAQPQAAML0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=8InXwYc8b9g","parent-reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":718,"cratio":1.78272,"dups":["6879158505294527693"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"3690295625"},"9727704840205014186":{"videoId":"9727704840205014186","docid":"34-3-12-Z422CDFE77E6D6305","description":"application...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3268000/6f4b713effca2657d1a74094c5f5e99f/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/CUCRQgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","isAdultDoc":false,"relatedParams":{"text":"Absolute Extrema on a Close Interval: Cubic Function","related_orig_text":"Mathispower4u","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Mathispower4u\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=u7vCqf6cxGU\",\"src\":\"serp\",\"rvb\":\"EqwDChMxMjQ0NDg4Mjc3NDQxMDYzNzI2ChQxMjg1NjY2MzQwNDQzMTI3ODI2NAoSMjAyNTExNDY5NjY3MTY5MDQwChQxMjI4NTI2MTUwODExNjQ0ODgwMQoTNjg3OTE1ODUwNTI5NDUyNzY5MwoTOTcyNzcwNDg0MDIwNTAxNDE4NgoUMTU4OTk2NTYzOTczNTU0MjgxMzMKEzQxNzQ2ODg2MzczNDU1NDU2NzQKFDEzNzA0NzMzMjQxNTgzMjc3MTI0ChQxNDg0NzE4MDE1NDk2NTE2MjI5MQoUMTAwMDEyMDA0NzIxOTI0NDI2MjUKEzQxMzU5MzQyMzU1NjM5ODY3OTkKEzk0MjAyNTEwNzM3NjUwNDk4NDAKFDE3Nzg5MjMzMTc1MDg4NzQ4OTMxChQxNDIwNjY3OTA3MzI0MTEzOTYwMwoTODIzOTgyNzY1NDc3Nzc3NTQyNQoUMTE0MzY3NDc4Njk3NTc4MTM2MTYKEzI5MjU5Nzc5ODIzMzUzNzA2NDYKEzQ4NTkyMDQyMTExNDcxODQwNDQKEzY1NTk2MjQzMjE5ODA2ODU3NDUaFQoTOTcyNzcwNDg0MDIwNTAxNDE4NloTOTcyNzcwNDg0MDIwNTAxNDE4NmqIFxIBMBgAIkUaMQAKKmhoZWh2ZHRoaHFjZXhrcGJoaFVDTlZNeFJNRXd2bzlBUy1KZmg2ZlFGZxICABIqEMIPDxoPPxPpAYIEJAGABCsqiwEQARp4gfoHAAb6BgD0-AgBAgT-AQ_49Pf3AAAA8_0B9fYBAAD0_QoI_AAAAPoK-wMCAAAA-Pb9_v3_AAATA_sGBAAAAA0ABA3-AAAACQf8-An_AQHyBvsHAwAAAA7s-wH_AAAA-g39-_8AAAD7_wT4AAAAAAfz8QkAAAAAIAAtK_XjOzgTQAlITlACKoQCEAAa8AF_CSABxQnfANsJCQDVD8IAlwT0ABwl4QDFx_YAzBXYAOINAgDUE-b_Bxgm_7wYCAAj7Nr_-tECACjYDf8j8AcA_QkdARLJAwBBAhb_6AAWAOEgK_0J-wsACtzp__v03v0S6if98ezW_u4DxAIY5isCEAr2ARDUDwbc8wX_zR35_8LP4P0H_OX_6doT_MQO_QMT_uwJE0QE_vMH_QQfAxcECt76-hU96v8X-AgI6QwLCN4E2wPqBtcD6iIc_goF_PHl7wXv-NQh__7a6gP70QEJB_4Q_jDYAgf6AvcE1-z89df_-vTxG_Xz6-X1DeLU9vkgAC3s5hk7OBNACUhhUAIqzwcQABrAB4Du074R3sO65eiWvJqCm72ptRe8AwVeveCg_b0uDKY7BZEevGL1Nz6AMIs8yZI5PFnAVL4EjIw5Ks_XPMuAMz7m0Yi9mGIzPHoXL74IPDA9KZ_UvOC7bb5eipY9FrlMvCLklz2qoH29hADLO9EfKj7qsCK9UMLMvGJRLL1kUqg8qJZjvE8IfDty0kW934pEvFrfNj3p2528U5HKPBCxIT58WaQ8Kcz7vDwE4TqYnEE76OEhu08kc7y4ghw9Wg2JvHVmLD2mi8M8_3SoPEfiijz4J6e8LUPaO8Yo0jkPh1u8Nvogu6xjCz0NBjI8WuybvGKTqTtxKsi9yGqpvCY19L1-Ay49q7oCPd1gOD4pplw94xs-Ou-SWL2TyQ05CCp8u5tATL3n9ve83OqgO08U8jzELbg7XZqqO-l2AD0wYgQ9GwfFOwlkwDzPWXU9hWOxPE0dWj1jzW28JIp_vLIDeDzro7i8Dc-BvIcEYr03rno9_jZ6vDPJkz2y53w8NBH0OyGNLzyqR5o8vM9xPMlTWz0AgI29qDBbPM7yBr2QOIq9nMtDvPW5Gj4rNBA9Symiu69DNT1ovsm9ZzuRuzX78jwWxYY8Rik-OwPBLT3svHK9l7hBuL2pKL15UaU9ULpyur9rp7s6w7k81jV_vEI9IjwtcWk9WemkO3stLb1HY7O98L6IOZhvWDzDoKc8MXkHPCVIuz2eoCM9YE8ruQfu4D163B679qUOuj26wb1RuQ88W5uEutBvqTyLivo7MZvfOtFIyj0L6oC8ju3guINMMjz4nna938ZBN3IRhLxiENg9hNQOt4nI1Tx9P4W9R1qFOURvzLzsZ5a9m8zqOEa5L73cxQq9eEWzuZ37xjx14Q08ZBKYuVMekr1KG8i94XObNzLjnb0awJs8D8D0OP7ymT3M1Wq7r9XEOOzbC7y27Ji7H0UvuuwJPL1yJfG81mKAOQIyT70jgtE9dbe8OJ5JNj0ExfS8DvF9Nx7Osjy2JVc9q0lMtz4mDT0j4Js9sOscuKIIqT08UOc9xI32OK1omLxupGy9P1MwOBCBuT1hXIA9LST4uMrhA74Q1x48l_1ON1l6I71VaLC9DOgxuIV6uj06JqY8x-hoOMplTT2sxtK8b5QbN62n9j2z6pi8ezs6ubmfrb3DM7y8hoYQt8MRgzlQVSG9hKErt0CQgr2mvHE9oH71tuwDvTt81A--F_rcuMr0cD0i4Ss-8cuKODwp-rtVKm094DKNuGBGp70XgRC7k3TZNwfJp7wCPkk9MAHYtiAAOBNACUhtUAEqcxAAGmA2_gBDAfjyKx1_5RboNwHYyvTU78EG_xno_yMXBBb7GbuQDv4AB8Qo15wAAAAh2PoL6wAKf-wC90IHOROf9PX8SW8lGVKG-O0BysoN9Oj6DRwbKEAA-BKxMXD4sCs_GSYgAC2mrQ07OBNACUhvUAIqrwYQDBqgBgAAXEIAAOhBAACeQgAAEMIAAERCAAA8QgAAjEIAAPDBAAAgwQAAgEEAAIC_AADAwQAA8MEAAODAAAAcQgAAAEAAACBBAAAkwgAALEIAAMDBAAC4wQAAwMEAAGjCAAAAAAAAwMEAAJLCAAAwwgAAqsIAAEhCAACAQQAAfMIAAARCAADQwgAAoEEAAIrCAACAwAAAoMAAALRCAAAwwQAAFEIAAGBBAACgwAAAyEEAABzCAABUQgAAlsIAAADBAADQQQAAaEIAAEDAAABQwgAAAMEAANhBAACgQQAAAEIAAGBCAAAAwwAABEIAAAAAAAAkQgAAEEEAAKDCAADQwQAAPMIAADRCAACAwgAAsMEAAAjCAAAQwgAAiMIAAFxCAADEQgAAUMIAACxCAACKwgAA2MEAAJjBAADYwQAAsEEAAIBAAADAwQAAikIAAKjBAAAAQgAAAAAAACBBAABQQQAAwMAAAIhCAABgwQAAIEEAAGxCAABAwAAAuMEAAOhBAAA8wgAAgEAAAEDAAADgQAAAYEEAAGDCAAAAQgAAQEAAAEDBAAAYwgAAiEEAADjCAAAAQQAAAMIAACBBAABIQgAAsEEAAIA_AACYwQAA8MEAAIZCAAAAwQAADMIAAJrCAADQwQAAXMIAAAjCAAD4wQAAUEEAAKBAAADgQQAAbEIAALDBAADAQAAAIEEAABTCAABswgAAIMEAAHxCAAAAwQAAWEIAAAhCAADwQQAA4EAAAFDCAAAAwAAAAEAAACRCAAAgwgAA6EEAAERCAAB8wgAAgMAAAIBAAACYwQAAAMEAALhBAAAQQgAAoEAAADBBAADIwQAABMIAAAzCAAB0wgAAUMIAADzCAADwQQAAQMAAAMDBAACIwQAA4EEAAIbCAABUQgAA6EEAAEBAAAA4wgAAIEEAAKBBAADYwQAAOMIAAIDAAAA8QgAAVMIAAAxCAAAgwQAAIMIAAFzCAAAwwQAAoMEAAGRCAAAAwgAAXMIAAFjCAABQQQAAQEAAAJBBAAAEwgAADEIAABDBAAA8QgAAUEIAABzCAAAQQQAAAMAAABBBIAA4E0AJSHVQASqPAhAAGoACAACgPAAA-D0AAMo-AACYPQAABD4AAMg9AADYPQAAAb8AABy-AABMPgAA-D0AAHC9AABMPgAA6D0AADC9AADoPQAA2D0AAMg9AAAMPgAA5j4AAH8_AABwPQAAUL0AAOg9AABMvgAAQDwAAKg9AABsvgAAmD0AAJY-AABQvQAAcL0AABS-AADYPQAAiD0AAEC8AACIPQAA4r4AAFy-AAAsvgAAHL4AAKC8AAAwvQAAUD0AAJi9AABQvQAAgDsAAEA8AABQvQAAor4AAHA9AAB8PgAAmD0AANI-AADIvQAAoDwAACM_AACKvgAATD4AANg9AAAkvgAAoLwAAFA9AACSviAAOBNACUh8UAEqjwIQARqAAgAALL4AAHC9AADYvQAATb8AAJi9AAAQPQAAhj4AALi9AAAwvQAAUD0AAEA8AAB0vgAA4LwAABS-AADIPQAAML0AAIg9AAAbPwAAiL0AALY-AABUvgAAML0AAIA7AAAsvgAAqD0AAOA8AACIvQAA6L0AAKg9AABAPAAA4LwAANg9AAAcvgAAkr4AAKA8AACovQAABL4AABw-AAAcvgAAUL0AAIg9AABQPQAA4LwAAIC7AABMvgAAgLsAAH-_AACIvQAAcD0AADA9AABEPgAA6L0AAIA7AABwPQAAyD0AAEC8AACgPAAAiD0AAMi9AADYvQAAJD4AAHC9AADIPQAAmL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=u7vCqf6cxGU","parent-reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1238,"cheight":720,"cratio":1.71944,"dups":["9727704840205014186"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"678255839"},"15899656397355428133":{"videoId":"15899656397355428133","docid":"34-1-3-Z620398B1E43D182E","description":"This video explains how to easily find a math tutorial video using the new database supported by Phoenix College. Link: http://www.phoenixcollege.edu/academics/programs/mathematics/math-videos...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4303434/0d5e139f497ad116c69ad71e1b0da197/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/BOGDLgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","isAdultDoc":false,"relatedParams":{"text":"New Feature: Mathispower4u Video Database","related_orig_text":"Mathispower4u","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Mathispower4u\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=hLHpFf8Vmu0\",\"src\":\"serp\",\"rvb\":\"EqwDChMxMjQ0NDg4Mjc3NDQxMDYzNzI2ChQxMjg1NjY2MzQwNDQzMTI3ODI2NAoSMjAyNTExNDY5NjY3MTY5MDQwChQxMjI4NTI2MTUwODExNjQ0ODgwMQoTNjg3OTE1ODUwNTI5NDUyNzY5MwoTOTcyNzcwNDg0MDIwNTAxNDE4NgoUMTU4OTk2NTYzOTczNTU0MjgxMzMKEzQxNzQ2ODg2MzczNDU1NDU2NzQKFDEzNzA0NzMzMjQxNTgzMjc3MTI0ChQxNDg0NzE4MDE1NDk2NTE2MjI5MQoUMTAwMDEyMDA0NzIxOTI0NDI2MjUKEzQxMzU5MzQyMzU1NjM5ODY3OTkKEzk0MjAyNTEwNzM3NjUwNDk4NDAKFDE3Nzg5MjMzMTc1MDg4NzQ4OTMxChQxNDIwNjY3OTA3MzI0MTEzOTYwMwoTODIzOTgyNzY1NDc3Nzc3NTQyNQoUMTE0MzY3NDc4Njk3NTc4MTM2MTYKEzI5MjU5Nzc5ODIzMzUzNzA2NDYKEzQ4NTkyMDQyMTExNDcxODQwNDQKEzY1NTk2MjQzMjE5ODA2ODU3NDUaFgoUMTU4OTk2NTYzOTczNTU0MjgxMzNaFDE1ODk5NjU2Mzk3MzU1NDI4MTMzaogXEgEwGAAiRRoxAAoqaGhlaHZkdGhocWNleGtwYmhoVUNOVk14Uk1Fd3ZvOUFTLUpmaDZmUUZnEgIAEioQwg8PGg8_E4kBggQkAYAEKyqLARABGniBAgUC_v8CAPH7EgUGBP4BHAD8_vQDAwDxAfcCBwH_AO38A_oD_wAA7gTuBP0AAAD8A_n7_f4AABH7_vkDAAAACAAEBPwAAAAGA_YB_wEAAO8BBv8DAAAAFAQSAgAAAAAGEwYC_gAAAAABAQMBAAAADQ33_QAAAAAgAC0zINc7OBNACUhOUAIqhAIQABrwAV_8DwHYIhD_BPMjAP4b9wGB8Pv_J_MMANAE_gC3Afr_6BXyAOf2AwH6CBwAyw3y_xTgA_8-_BEA7eIBACn2DwEjD_kASgcFAg3_BgAW9esBDP4N_w7tCgAR_AkAAwcH_xLz-v_CAu79-P4CACX0FwHu7PkBE_sI__oE-AHhB_kB4QUDBBXfAwHe-Pb_BfwCAO4I9AMJHgX7_vz8BQEJAwgJDAD-DvH9_BUfEQP2-Qn58P35_CL_CQAWEfD_-CYRAvoEDAHt8wn93A4MBAPa-QDs4wgF9PP8Bw0O9A0J5_wC8hQF8OMP__wADgcQ7PQOASAALZD6Tjs4E0AJSGFQAirPBxAAGsAHsg7HvudZJDzfCpe8-3bxuxm0RjyYafs8-INGvVbBg7ztxPq7n9ajPSHw9jxF9py8OGmKvtEMPTztrn08OxlsPq4M6jyCjCU8vw83vh3ZaDo9Amk9Zyejvs4ZtLqlJh66R8hQPkqnP7xfUkY8Cp0XPpObFbwRiq28YP1kvXm5bbp4fLm7MuPxu7FX87zJlv66YapZPoAXzzsQqyQ9f6NdPlGfJD1SrY-8xQDoO9_mqLzf3x48lWYOvSmdo7xE2zE88FnNPKxygDtG0m48dApCPl2pQrzyzLA8qBW7PfBpE70_0Su83gydPTN51jt_4h276vFWPDAe1Lwzd1S56tCUvWnvwjxv3Qg99bwrPs0seDz6er48ZDAwPdEs_7zjENY8s743vLcdBbz6t4k7GnInPc5Rpjv7QgK82RIIvb6GoLz5HG07Eqt1PRABbD1rhDO5Ht3IvCZqDDwYIic8a4OuvMlILDzexou8WSRXvfvmfrz9hYE7D7bYPVyjb72w7Yg83vVjPWPO-bv97Zk6rt68vKoa8zyFf3-51QSxPaKcw7zJ3hY8N43NPZZiQr25nUc7dnsfva-BiDu7mVG899Z2vHeOFz12liy7uphQPR8bV71iaqY85gmfPW3gszxRnwk8kONiPZX4N7xIxgW8Jgm4vSwrbT3tBC05k0a7PBTfej1WoNC7ESuNPVdCHbmL1hc8HhijO4mShb0gowA5LeLkuw9uIT21AN84mpiuvO4PDDwj3IE70WAuPY1dZz1cczW3sXWZOAcLB76sMvi4Zgm8PL1wxjsU75064eSYPXt5Ljvhu2Y5cdzzOyL8C70QL9s4XtylO6lsWL1iRNC5kyXpvFcQGjz6yPc6nQgJvPgCzrxxY-o1wLivvOX-uDvLwQI4P1RavbJGPT2Q3IO5yIPjPHUM4zy-HNm3c9h9vMJHub0Wm_u4AgNSPVqc8bwpvDW5JdcDvQS0uD2qJ6q45vyOvTIMjrzZXgK5ER7Iu5F9UD3vHYw26lOzvTJ8nz1InW44kyECveSNxDs2vOS2u9TIPQNANb3Yvns3LflpvPIKxDySL3I3ZdEqvdszG76yabU4PGrMvPKlZr369-W3UjGJPd9yUL1zUlg3bzNQPTTOgL3GtWi3lfwevSUOMLvWUew3_VfMvAPTpD02ZqK3poaRPCNjWr30foo3XtXdu8B6fL0FpfM33I1UvZ0ns70sNBK4ShuYvBkVPT3qkis3rARGvRElMD0PcrO4x4mKvHoklDxZoXS45cEsPRSljrxsGQq3IAA4E0AJSG1QASpzEAAaYCYJAFYSI-vNCQLl9O3d2-_wAdohwOcAAuUAAAPd2uMHDqL9Gv9B5hjzrwAAAP_-_CUQANpq6d3LIwwaCeCy_hEIfwkrKtcWAw3O4_7wy_X4B7s1KgD22a0VQgi1NDAxAiAALS2jKjs4E0AJSG9QAiqvBhAMGqAGAAAEwgAAQEEAAGRCAABQQgAAIEIAAFjCAAAwwQAAUMEAAIbCAACGwgAA8EEAAEzCAAAQwgAAPEIAAOhBAAAkQgAAmMEAANDCAAAUwgAAYMEAAARCAAAQwgAA6EEAAGRCAAD4wQAAnMIAAFTCAABQQQAAaEIAAJjBAADAwAAAuMEAAK7CAAAgQQAAUEEAAIbCAACgQAAAwMAAAHRCAACAQQAAIEEAAFzCAABowgAAyEEAADDBAACIwQAADMIAACDBAABgwQAAEMEAAMDCAABgQQAAQMEAAGDBAAB8QgAA6EEAAHDCAAAUwgAAgkIAAODBAAAwwQAA4EAAAHjCAACYwgAAgMAAABzCAAAgQQAAhkIAAFBBAACAvwAAmEEAAEBCAACQQQAA6EEAAFDBAAAAAAAAwMAAAPBBAACWQgAAksIAAADCAADSQgAA0MEAAIC_AACwwQAAwEEAABRCAABQQQAAgEEAADBBAADowQAAHEIAABBBAABUwgAAcEEAAJjCAADQQQAAIEIAAMBAAAAAAAAAoEAAAIA_AACcQgAA-MEAAABCAAAIwgAAmEEAAJhBAAAAAAAAKEIAACRCAABwwQAALMIAABhCAAC4wQAAKEIAAIDBAAAwQQAA2EEAAIBAAAAkQgAAbMIAAADCAACCwgAAYEEAACxCAACAQAAAYEEAAOjBAADwwQAASEIAAOjBAACQwQAAgL8AAFDBAABgQQAAWEIAAJhBAACowQAA8MEAAMBAAAC4QQAAgEEAAPjBAAC4QQAAqMEAAHDBAAAkQgAAQEAAAIDAAAAAQQAAisIAADxCAAAgQQAAHMIAACTCAACgwQAAQMAAAGDBAADCQgAAEEEAAAhCAABcwgAAmMEAAOjBAABEwgAAMEEAAJjBAAAgQgAAcEEAAHTCAAAUQgAAAMEAAADBAABAwQAAYEIAAGhCAACMwgAAiEEAAIpCAAB0wgAAZMIAAIC_AADIwgAACEIAAEBCAABswgAA8EEAALxCAACIQQAAMEEAADBBAADIwQAA0EEAALhBAADgQQAAdMIAAKjCAADYwQAAiEEgADgTQAlIdVABKo8CEAAagAIAAES-AACovQAArj4AAIA7AAAUvgAAyj4AAPi9AAAlvwAA3r4AAOg9AACAuwAAwr4AAIg9AACoPQAAUL0AAAS-AAC-PgAAoLwAAKC8AACOPgAAfz8AABA9AABAPAAADL4AAKA8AACAuwAAML0AAEC8AACovQAAbD4AAEQ-AABQvQAAED0AADQ-AAAsvgAAUL0AAII-AACyvgAA-L0AAMi9AACOvgAAUL0AAMg9AADgPAAAmD0AAIg9AACgPAAAQDwAAJq-AABcvgAAyD0AAK6-AABQPQAAfD4AAOi9AACYPQAANz8AAKA8AAAwvQAAxj4AAHA9AACIPQAAdD4AABy-IAA4E0AJSHxQASqPAhABGoACAACKvgAAcD0AAMi9AADuvgAA-D0AABQ-AAD4PQAAiD0AAJi9AADgPAAAJL4AANi9AACYvQAAyL0AAEA8AABAPAAAHD4AACc_AACgvAAAyj4AAIA7AACgPAAAQLwAAOi9AACAuwAA4LwAAIg9AAAwvQAAmD0AAAQ-AACIPQAA-D0AAOi9AAAQPQAAuD0AANi9AACoPQAAMD0AADy-AACYPQAATD4AALi9AAAUPgAAoDwAAPi9AAAEPgAAf78AAAS-AAD4vQAAHD4AAHw-AAAwvQAAUL0AAFA9AACWPgAAcD0AAOA8AABAvAAAML0AAFQ-AACAOwAA6L0AAOi9AABQvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=hLHpFf8Vmu0","parent-reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["10699644751328417358","15899656397355428133"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"313628153"},"4174688637345545674":{"videoId":"4174688637345545674","docid":"34-9-16-Z971F6551DE81462A","description":"This video explains how to use a contour map to estimate partial derivative function values. https://mathispower4u.com...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/367603/57f85e62db9f2b3bb152d1fa6219ea54/564x318_1"},"target":"_self","position":"8","reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","isAdultDoc":false,"relatedParams":{"text":"Use a Contour Map to Estimate Partial Derivative Function Values","related_orig_text":"Mathispower4u","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Mathispower4u\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=bwvCTpLuiII\",\"src\":\"serp\",\"rvb\":\"EqwDChMxMjQ0NDg4Mjc3NDQxMDYzNzI2ChQxMjg1NjY2MzQwNDQzMTI3ODI2NAoSMjAyNTExNDY5NjY3MTY5MDQwChQxMjI4NTI2MTUwODExNjQ0ODgwMQoTNjg3OTE1ODUwNTI5NDUyNzY5MwoTOTcyNzcwNDg0MDIwNTAxNDE4NgoUMTU4OTk2NTYzOTczNTU0MjgxMzMKEzQxNzQ2ODg2MzczNDU1NDU2NzQKFDEzNzA0NzMzMjQxNTgzMjc3MTI0ChQxNDg0NzE4MDE1NDk2NTE2MjI5MQoUMTAwMDEyMDA0NzIxOTI0NDI2MjUKEzQxMzU5MzQyMzU1NjM5ODY3OTkKEzk0MjAyNTEwNzM3NjUwNDk4NDAKFDE3Nzg5MjMzMTc1MDg4NzQ4OTMxChQxNDIwNjY3OTA3MzI0MTEzOTYwMwoTODIzOTgyNzY1NDc3Nzc3NTQyNQoUMTE0MzY3NDc4Njk3NTc4MTM2MTYKEzI5MjU5Nzc5ODIzMzUzNzA2NDYKEzQ4NTkyMDQyMTExNDcxODQwNDQKEzY1NTk2MjQzMjE5ODA2ODU3NDUaFQoTNDE3NDY4ODYzNzM0NTU0NTY3NFoTNDE3NDY4ODYzNzM0NTU0NTY3NGqvDRIBMBgAIkUaMQAKKmhoZWh2ZHRoaHFjZXhrcGJoaFVDTlZNeFJNRXd2bzlBUy1KZmg2ZlFGZxICABIqEMIPDxoPPxOVAoIEJAGABCsqiwEQARp4gfoB8wAG-AD19BEI-gf9AiUDBwLzBAQA8wb0_PQD_wDq-wP5A_8AAPMRCQD6AAAABfr7DP_9AQADDfIC7gD_ABj4-wD_AAAA8QLvBAABAADq_wIKBAAAAAvm_vP_AAAA9wr_Cfz_AAD9EQYBAAAAAA3q_AsBAAAAIAAt9MHAOzgTQAlITlACKnMQABpgJg4AGSsD5d_iEubMCuUEAs724g7TEgD2BwAhI87xIPrxvgLmAC7lHfm9AAAAERb3IiQA61UW39Uh9yoDrvgXBCl_HAAE-v768MwFBBof7s_y7QQ3AOTvFw4W--0z5x0dIAAt1vlNOzgTQAlIb1ACKq8GEAwaoAYAAMBBAADwwQAA4EAAADDBAACwQQAA0EEAAKBCAACIQQAAMMIAAFBBAABwwQAAgL8AABzCAACIQQAAVEIAALBBAABAQQAAnMIAAOhBAAAwwgAAoMAAABDBAAD4wQAABEIAAARCAACgwQAA8MEAAKbCAACQwQAAuEEAAMDBAAAQQgAAosIAAAjCAACAwgAAcEEAACRCAACUQgAAuMEAAJjBAABgwQAA2EEAADBCAACIwQAAgEIAAJDCAAAAAAAAgD8AAJpCAADQQQAAAMAAAJDBAAAAQgAAQEEAAMBBAABgwQAAsMEAALhBAADwwQAAjEIAACBCAACmwgAAgMEAAMTCAABAwAAAJMIAAODBAAAswgAA4EEAAIjBAABIQgAATEIAAIzCAAAgwQAAAMIAABjCAAAIwgAAUEEAAABBAADoQQAAkMEAAL5CAAAowgAAgEEAAHhCAAAowgAAmEEAAMBAAAAQQgAAMMEAACDBAABoQgAAbMIAAKjBAADgQAAAoMIAAIBAAADowQAASEIAACxCAAAQwgAAAEIAAKBAAAAEQgAAgsIAAKhBAAAcwgAAIEEAAADBAAB0QgAAUEEAACxCAAAgwQAAAEEAAPDBAACAQQAAkMEAACBBAACawgAAXMIAAOjBAABcwgAAKMIAAEBBAAAAQQAAyEEAADBCAACYwgAAMMEAAABAAADgwAAAeMIAAIBAAAAIQgAAAMEAAExCAACQQQAAgEEAALDBAAAAwQAAMMEAAI7CAACIQgAASMIAABBBAACIQgAAaMIAAABBAADYQQAAMEEAALTCAADwQQAAoEEAALjBAAAMQgAAMMIAAKDCAABIwgAASMIAAIJCAADgQQAAuEEAANDBAACiwgAAAMEAAOhBAADgwAAAkkIAABxCAABQQQAAkMEAANhBAAAAwAAAdMIAAADCAABUwgAA4MAAAJDBAAAAQAAAIMIAAKjBAABAQAAAYMIAABBCAAC2QgAAQMEAANjBAABcwgAAqEEAACDBAABwwQAAgL8AAMBBAACAPwAAkkIAAEBCAAAMQgAA6MEAAEDAAAAAwSAAOBNACUh1UAEqjwIQABqAAgAARL4AAFC9AACyPgAAiL0AAIC7AAA8PgAAqD0AAP6-AAB0vgAAMD0AADS-AAAEvgAAED0AAJg9AADgvAAAEL0AAAw-AACAOwAAUD0AAK4-AAB_PwAAHD4AAIA7AAA8PgAAiL0AACQ-AACgPAAAgDsAAKA8AAD4PQAA4LwAAJi9AACYvQAA2L0AABA9AADYvQAAJD4AADy-AADovQAA-L0AAKi9AABQPQAAqD0AAHC9AAC4vQAAED0AALg9AAD4vQAAHL4AAHS-AAAsPgAAJD4AAFQ-AACCPgAAML0AAHC9AAAFPwAAEL0AAMg9AACyPgAAcD0AADA9AAC4PQAAgDsgADgTQAlIfFABKo8CEAEagAIAAGy-AACCPgAADL4AAAu_AAAQPQAAyL0AAII-AAA8vgAAQLwAAEw-AACgvAAA-L0AALi9AAAkvgAAUD0AAJi9AABAvAAABz8AANi9AACmPgAA6D0AAJi9AACAuwAAUL0AAEA8AADgvAAAqL0AAKg9AAC4vQAAUD0AAHA9AAAsPgAATL4AAPg9AAAQvQAA-L0AAJo-AAA0PgAAZL4AALi9AABUPgAAoLwAAFA9AAAwPQAAqD0AABw-AAB_vwAAEL0AAKi9AACoPQAAHD4AABA9AAC4PQAAuD0AABC9AADIPQAA4LwAAEC8AACAuwAADD4AAIA7AABAvAAAUL0AAEA8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=bwvCTpLuiII","parent-reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4174688637345545674"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"13704733241583277124":{"videoId":"13704733241583277124","docid":"34-9-2-Z9FCD5CE087A9520A","description":"This video explains how to use the slope of a secant line to determine the value of a partial derivative using a contour map.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3288421/fba5224885d626c200686f0d6691fa5e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/eOO8FAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","isAdultDoc":false,"relatedParams":{"text":"Ex: Estimate the Value of a Partial Derivative Using a Contour Map","related_orig_text":"Mathispower4u","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Mathispower4u\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=rImBsvH5Bzs\",\"src\":\"serp\",\"rvb\":\"EqwDChMxMjQ0NDg4Mjc3NDQxMDYzNzI2ChQxMjg1NjY2MzQwNDQzMTI3ODI2NAoSMjAyNTExNDY5NjY3MTY5MDQwChQxMjI4NTI2MTUwODExNjQ0ODgwMQoTNjg3OTE1ODUwNTI5NDUyNzY5MwoTOTcyNzcwNDg0MDIwNTAxNDE4NgoUMTU4OTk2NTYzOTczNTU0MjgxMzMKEzQxNzQ2ODg2MzczNDU1NDU2NzQKFDEzNzA0NzMzMjQxNTgzMjc3MTI0ChQxNDg0NzE4MDE1NDk2NTE2MjI5MQoUMTAwMDEyMDA0NzIxOTI0NDI2MjUKEzQxMzU5MzQyMzU1NjM5ODY3OTkKEzk0MjAyNTEwNzM3NjUwNDk4NDAKFDE3Nzg5MjMzMTc1MDg4NzQ4OTMxChQxNDIwNjY3OTA3MzI0MTEzOTYwMwoTODIzOTgyNzY1NDc3Nzc3NTQyNQoUMTE0MzY3NDc4Njk3NTc4MTM2MTYKEzI5MjU5Nzc5ODIzMzUzNzA2NDYKEzQ4NTkyMDQyMTExNDcxODQwNDQKEzY1NTk2MjQzMjE5ODA2ODU3NDUaFgoUMTM3MDQ3MzMyNDE1ODMyNzcxMjRaFDEzNzA0NzMzMjQxNTgzMjc3MTI0aogXEgEwGAAiRRoxAAoqaGhlaHZkdGhocWNleGtwYmhoVUNOVk14Uk1Fd3ZvOUFTLUpmaDZmUUZnEgIAEioQwg8PGg8_E5QCggQkAYAEKyqLARABGniBAAj7Dgj3APb6F_39Bf8BHwYS_PQEAwDyEPXzBAH_APUF__UBAAAA8QgCCPUAAAAQ-v0M9f8AABAP_f73AAAAIv3x-fwAAAD9_eoAAAEAAOn_AgoE_wAA_wL_8v8AAAAKD_0FAQEAAAAU_P8BAAAAC_f5EwAAAAAgAC3u8L07OBNACUhOUAIqhAIQABrwAX_sIQHP-9D_7fz9AO016ACiMgP_HSXhALvxCwDOMwAC1AcKAPkZ4QAMBxX_uyobARME6gDcxA0ALL0MAvjdGADV4hAAKwQ6AGkWCAER5gz-7Bf5ABAHEP8D69wA9hPh_xLpJ_3w7Nb-9vPdBkj6KQAEDAIFA_X-BePdE_3LExwBzt3N-wf85f_0BwD2wSAYAxP-7AnmJfb57uoC-w8IDQgQ7PD99BLa_yMN-AXrEv4C6vv2-_zi7foVBxIG4Q7wAufwGPns9R73Evv7DQ_wAgYX9Pv6OfPnCiEH_QYM3vsD8BYK_8sV8vXtAPgS-dUB6SAALVTpGDs4E0AJSGFQAirPBxAAGsAHH7zOvrESmDtG7cA7XNf5vO97b720BQS9FNqYvSdPeT0LEYm7kKIePkoS3zy3QwE8WcBUvgSMjDkqz9c8LQtWPrCKXL1BLSa9ehcvvgg8MD0pn9S89aFrvoTTBz10NcO7JmeyPbMxBjvR05s8wX6-PfL3wb0XrW285MPHPMPyILqDmuu8DUHEPB5wGL3f_ly8_tVDPWA-eb181rU8uyYEPq2Hn71Ad_i89WItPVlUnzxxu-E7lWYOvSmdo7xE2zE8CXmTPQ3WyTz8jmE8vdS-PQHPh7x59Ba7nm2PPTMCwzu66gm8naJ-PJdBeTrpp268eGeKO9OIGb0F-dm8hneEvUdULT3fmbu7-wU7Pto31z1Edco7BZKWvcp9PLxx8vC7Yk4rvfR9wLvDNAI8Dk7kPVr6C70rdmo7a3Otu1zjOD0DnSS8mfuPvZtFjj1nbck8LGHtPS2Eyz1npiy7jnx5vZYQpDvW7SI7ldjQPFLSYz3726-6P-MCPgUZAbzzoVU8AerduqF-mzu546i83Ve6PUMxk70uHdK7JEYPPao7gL1NdA67fEftPSA3DT1TXR-7V1gVPYtUeL2SEN27K7Q9PF8BFryjxJU6NSllPaGBuL1qUA87zxmsvFupoT0sVXW72-MgvVgHm7z-eui7Dk-vPIM16TwD-Po7ey0tvUdjs73wvog5Wt-2PCVuHz2nWqw7OzxfPKrcn72zYEY6GLIKPmWew7sY0YI4jL_IvHfZLzsKvoa70F8IPekQGD13fX25B9FaPQ9MCb2zhYC6CvcKPc8GKj32rb05-Zj0PCQKLT31lwA4QZhAPYqT-71Ma3Y4sxO0vdZFkL20ZzA5ydCMPFk_7LzyKps5Ja_OPSM9u7yjrg-5Ux6SvUobyL3hc5s36s3ovUxq7DvuIJM3atX0OwVOlr2gNjM4q_sRvdaKmzwv4zi40eIxve42ub2-oBw5pN-evfT4_T2gCBU4ErIgPIispLyKjto5B1yMPauBIT37x6c4ACMDPQ7b1j0-T4w36NgBPRITVD2qnIK2roNevGuD7rw5KA44q6xyPbkbwDv_rNG4X4u3vYzKvL33Jj24wnVbvbow0r02w7u1yF86PtyVwjzNr0s4M_xXOnaKFb295DA4HVtvPQYprT2MSJ64ppfYvfrARDxzK2S4znI0vF0Py72ocJu3tT0QvS9n2zzw4QC4va8FPaVJCb6tnoW4Iv_sPTUpBT7zflu4kqgcvUdVMz3mr3y4TJ4cvRbKurok3si3GttrvLGDEDw6gSQ4IAA4E0AJSG1QASpzEAAaYDPsAB4IBwQK5ibjzv_fDdrN4dEevSn_Etv_FBi9-AYW5qnv3_9Y4xXPnQAAADcJ8yAgAPd-zMvSCP5sG7PW_xMDfw4EO7bFJPSrsSM6F9_sCwcoWwAE6bYuRgDxMywpLyAALc25Ejs4E0AJSG9QAiqvBhAMGqAGAABAQAAALMIAAIBBAACoQQAAMEEAAPBBAACmQgAAgD8AAEjCAABgQQAAeMIAABxCAAAcwgAAoEEAAMBAAADgQAAAcMEAALTCAACAQAAAwMEAAKhBAACgQAAAQMIAACBBAAAsQgAAsEEAALDBAACwwQAAmMEAAIhBAAAYwgAA4EEAADDCAABgwQAAisIAAIhBAAAwQgAAREIAAKDAAAAkwgAAMMEAAGBBAADYQQAAgEEAAKhBAACUwgAAAAAAACDCAAAUQgAAoEEAAFDCAADgQAAAuMEAAOhBAAAAQQAAYMEAAODBAAAIwgAAMMEAAJBCAAAgQgAAhsIAAIjCAACkwgAAAEEAAGjCAACowQAAhsIAAOjBAADowQAAzEIAANBBAACQwgAAAMAAAODBAAC4QQAAsMEAAABBAAAYQgAAmkIAACDBAACkQgAAPMIAAIDBAABcQgAAEMIAABRCAACgwAAAcMEAAPhBAAAEwgAATEIAAKjBAACowQAAQEIAAIrCAABAwAAAuMEAAI5CAAAsQgAAUMEAAJhBAAAMQgAAmMEAAOjBAACAwQAAXMIAAIA_AACIQQAAxEIAAChCAACAQQAAFMIAAGhCAADYwQAAQEEAAOjBAAAAwQAAmsIAABTCAAAAAAAAOMIAAOhBAAAAQAAAsMEAAHDBAABAQgAAtsIAALjBAAAgQQAAuMEAAI7CAACwQQAAMMEAAMhBAAAkQgAAsEEAAIA_AAAQwQAAiEEAAOBAAACGwgAAYEIAAHTCAACQwQAANEIAAGDBAADgQAAALEIAACRCAACIwgAA4EEAAAhCAAAgwQAAMEIAAEzCAACywgAAsMEAAHDCAAC6QgAAmMEAAJhBAABAQAAAuMIAAEBBAABAQQAAQEAAAK5CAADQQQAAQMAAAAjCAACYQQAA2EEAAILCAACAwQAAUMIAAIjBAAAQwQAAqMEAAJDBAADAwQAAkEEAAPDBAAAswgAA0EEAABBCAABEwgAANMIAAJhBAACEQgAAoEAAAABCAACQQQAAAEAAANhBAAAoQgAAkEEAAJjBAAAwQQAA4MAgADgTQAlIdVABKo8CEAAagAIAAJi9AACgvAAAoj4AAJg9AACIvQAAcD0AAPi9AACyvgAATL4AALg9AADgPAAAML0AANg9AADgPAAAcL0AADC9AAAUPgAAED0AAEA8AAAEPgAAfz8AACQ-AACgPAAAVD4AALi9AAC4PQAAyL0AAHA9AACIPQAAuD0AAIA7AAC4vQAAUL0AADA9AACgvAAAoDwAANg9AACKvgAADL4AABy-AADYvQAAEL0AAMg9AAD4vQAA2L0AALi9AAAQvQAAQLwAAIC7AADovQAAdD4AAAw-AAD4PQAADD4AAAS-AACYvQAA8j4AAAS-AACYPQAAjj4AADC9AAAcvgAAND4AAIC7IAA4E0AJSHxQASqPAhABGoACAACevgAAqD0AAKA8AAAXvwAA-D0AADA9AADIPQAAqL0AAEA8AABEPgAAuL0AAJi9AACovQAAEL0AAHA9AAAQvQAAgDsAACU_AAAEvgAApj4AAKA8AAAMvgAAQDwAAMi9AACYPQAAQDwAAKA8AAAwPQAAiL0AABw-AACgPAAAHD4AAMi9AADoPQAAFD4AALi9AAAsPgAALD4AAES-AADgvAAAPD4AAOi9AADIPQAAoLwAAMi9AABQvQAAf78AAJg9AADovQAAuD0AAOA8AAAQvQAADD4AAOg9AABAPAAAcD0AAOA8AABAPAAAQDwAALg9AAAQPQAADL4AAOC8AAD4PSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=rImBsvH5Bzs","parent-reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13704733241583277124"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"2687082434"},"14847180154965162291":{"videoId":"14847180154965162291","docid":"34-4-3-Z8D4E8BA14E203202","description":"derivative...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4080290/9ae69cfd11638c5bdacc063d4c3468a2/564x318_1"},"target":"_self","position":"10","reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","isAdultDoc":false,"relatedParams":{"text":"Determine a Maclauring Series and the Radius of Convergence: f(x)=4(1-x)^(-2)","related_orig_text":"Mathispower4u","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Mathispower4u\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=zXAoIiuzkPA\",\"src\":\"serp\",\"rvb\":\"EqwDChMxMjQ0NDg4Mjc3NDQxMDYzNzI2ChQxMjg1NjY2MzQwNDQzMTI3ODI2NAoSMjAyNTExNDY5NjY3MTY5MDQwChQxMjI4NTI2MTUwODExNjQ0ODgwMQoTNjg3OTE1ODUwNTI5NDUyNzY5MwoTOTcyNzcwNDg0MDIwNTAxNDE4NgoUMTU4OTk2NTYzOTczNTU0MjgxMzMKEzQxNzQ2ODg2MzczNDU1NDU2NzQKFDEzNzA0NzMzMjQxNTgzMjc3MTI0ChQxNDg0NzE4MDE1NDk2NTE2MjI5MQoUMTAwMDEyMDA0NzIxOTI0NDI2MjUKEzQxMzU5MzQyMzU1NjM5ODY3OTkKEzk0MjAyNTEwNzM3NjUwNDk4NDAKFDE3Nzg5MjMzMTc1MDg4NzQ4OTMxChQxNDIwNjY3OTA3MzI0MTEzOTYwMwoTODIzOTgyNzY1NDc3Nzc3NTQyNQoUMTE0MzY3NDc4Njk3NTc4MTM2MTYKEzI5MjU5Nzc5ODIzMzUzNzA2NDYKEzQ4NTkyMDQyMTExNDcxODQwNDQKEzY1NTk2MjQzMjE5ODA2ODU3NDUaFgoUMTQ4NDcxODAxNTQ5NjUxNjIyOTFaFDE0ODQ3MTgwMTU0OTY1MTYyMjkxaq8NEgEwGAAiRRoxAAoqaGhlaHZkdGhocWNleGtwYmhoVUNOVk14Uk1Fd3ZvOUFTLUpmaDZmUUZnEgIAEioQwg8PGg8_E_oCggQkAYAEKyqLARABGniBCAb5DAAAAPD3AggDBP4BAgwA__f__wDxAfcCBwH_AOwPCfoEAAAA_gsHAgAAAAAGCPn7-f0BABAB9_wEAAAACwAH_PwAAAAQEfr5_gEAAP3-BfMCAAAA-Q4E-_8AAADtDgn9_wD_APIBBfsAAAAA_PgG9gAAAAAgAC2ZQNU7OBNACUhOUAIqcxAAGmAQFgA8BxfV8_Ud4-_x9AYs_goS6vb3AP_gAN8b_dIJ6e3L_Rj_J9QkC8EAAAAX7sweCACwUBPlwjb3A_EI4unfCn8AIN_14wnx8vgG4SQS_h768B8A2_sNBgnu4yYzDCkgAC216FU7OBNACUhvUAIqrwYQDBqgBgAAgL8AACDCAABkQgAADMIAAKRCAADAwQAAVEIAANDBAACAwQAAKEIAAABAAAAQwQAAAMEAAIBBAAC4QQAA4EEAADBBAAAswgAAQEAAAADAAAAIwgAAAMEAAEzCAAAgQQAAEMEAACzCAACYQQAAZMIAAExCAACgwQAALMIAABhCAACgwgAAAMIAADzCAACwQQAAgkIAAMhCAABYwgAAGEIAAPhBAADgQAAAQEAAACTCAABoQgAAxsIAABDBAAAMQgAA2EEAALBBAADYwQAAcEEAAOhBAADgwAAAKEIAAHBCAADawgAAPEIAAJBBAAAUQgAAAEEAAIjCAACwwQAAmsIAALBBAACUwgAAOMIAAEDCAADAQQAAVMIAADBBAABMQgAArsIAAEBBAABwwgAADMIAAIDAAAAswgAAmMEAAEBAAAAkwgAAgEIAAJDBAADYQQAAIMEAAABAAAAcQgAA0EEAAARCAADgwQAAkMEAAIRCAACcwgAAFEIAAFRCAABgwgAAuMEAAEDAAACAvwAAoEEAABTCAACYwQAAFEIAAKDAAADgwQAADEIAAIC_AADwwQAAAMEAAChCAAAYQgAAqEEAAEBAAABQQQAAZMIAAKRCAABAQgAAwEAAANLCAAAAwgAAWMIAAAjCAACAPwAAAEAAAMhBAACAwQAALEIAAEDBAAAgQQAAgL8AACzCAABwwQAAAAAAAK5CAAAAwQAAvkIAAJBBAAA0QgAAIEEAAMjBAAAAQQAATMIAAAxCAACgwQAA0EEAACxCAAAAwgAAcEEAACBBAAAAQAAAoMAAADhCAACoQQAA0EEAAGRCAABAwQAABMIAAFzCAAA0wgAAHMIAAIzCAAAAQQAAMMEAAILCAACYQQAAgEEAACDCAACQQgAAuEEAANBBAACIwQAAQMAAAABAAAAwwgAAbMIAAADAAAAIwgAAuMEAAERCAABAwgAAiMEAAPjBAADAwQAAKMIAAJxCAAAAwAAAVMIAALrCAAAAAAAAAEEAAODAAACIwQAAAEAAAKDAAAC4QQAACEIAAPDBAAAAwAAAMEEAAIBAIAA4E0AJSHVQASqPAhAAGoACAABQPQAAjj4AAGw-AACAOwAAkr4AAOA8AAAUvgAAO78AAAS-AABQPQAArj4AAIA7AAAwvQAAFD4AABS-AAAEvgAAJD4AAKC8AABEPgAAxj4AAH8_AAAUPgAAoDwAABQ-AADgPAAAcD0AAAS-AAB0vgAAoDwAADA9AAAQPQAAEL0AANi9AAAUvgAARD4AAEC8AADgPAAAgr4AABy-AACyvgAATL4AAOC8AAAEPgAAUD0AAGy-AAAEvgAAJD4AAOC8AAAwPQAAJL4AAAw-AACAuwAAcL0AAIo-AAAsvgAAgLsAACU_AABcvgAAQLwAALi9AAAMPgAAED0AAI4-AABMviAAOBNACUh8UAEqjwIQARqAAgAAyL0AAHA9AAAwvQAALb8AABS-AACIvQAAiD0AADC9AACIvQAAjj4AADA9AABEvgAAoDwAACy-AABAvAAA2L0AACS-AAArPwAAcD0AAHQ-AACAuwAA6L0AADA9AAD4vQAAED0AADA9AADIPQAAmD0AAIg9AABQPQAAgDsAANg9AAB8vgAAcL0AAMi9AABEvgAABD4AAJY-AACGvgAAqL0AALg9AADYPQAAQLwAAKA8AAAwPQAAML0AAH-_AABAPAAA-D0AALg9AABAvAAAqL0AALg9AADgPAAALD4AAIC7AACgPAAAND4AACS-AABQvQAAJD4AALg9AAAwPQAATL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=zXAoIiuzkPA","parent-reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14847180154965162291"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"10001200472192442625":{"videoId":"10001200472192442625","docid":"34-1-7-Z52EFE4BCEA9CF28A","description":"This video explains how to use the ratio test to determine the radius of convergence and interval of convergence of a given power series. https://mathispower4u.com...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3454093/15099155e1ff35a2419466d71b1283ea/564x318_1"},"target":"_self","position":"12","reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","isAdultDoc":false,"relatedParams":{"text":"Determine the Interval of Convergence and Radius of Convergence of a Power Series (Exp)","related_orig_text":"Mathispower4u","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Mathispower4u\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=bYMVAJIeZko\",\"src\":\"serp\",\"rvb\":\"EqwDChMxMjQ0NDg4Mjc3NDQxMDYzNzI2ChQxMjg1NjY2MzQwNDQzMTI3ODI2NAoSMjAyNTExNDY5NjY3MTY5MDQwChQxMjI4NTI2MTUwODExNjQ0ODgwMQoTNjg3OTE1ODUwNTI5NDUyNzY5MwoTOTcyNzcwNDg0MDIwNTAxNDE4NgoUMTU4OTk2NTYzOTczNTU0MjgxMzMKEzQxNzQ2ODg2MzczNDU1NDU2NzQKFDEzNzA0NzMzMjQxNTgzMjc3MTI0ChQxNDg0NzE4MDE1NDk2NTE2MjI5MQoUMTAwMDEyMDA0NzIxOTI0NDI2MjUKEzQxMzU5MzQyMzU1NjM5ODY3OTkKEzk0MjAyNTEwNzM3NjUwNDk4NDAKFDE3Nzg5MjMzMTc1MDg4NzQ4OTMxChQxNDIwNjY3OTA3MzI0MTEzOTYwMwoTODIzOTgyNzY1NDc3Nzc3NTQyNQoUMTE0MzY3NDc4Njk3NTc4MTM2MTYKEzI5MjU5Nzc5ODIzMzUzNzA2NDYKEzQ4NTkyMDQyMTExNDcxODQwNDQKEzY1NTk2MjQzMjE5ODA2ODU3NDUaFgoUMTAwMDEyMDA0NzIxOTI0NDI2MjVaFDEwMDAxMjAwNDcyMTkyNDQyNjI1aq8NEgEwGAAiRRoxAAoqaGhlaHZkdGhocWNleGtwYmhoVUNOVk14Uk1Fd3ZvOUFTLUpmaDZmUUZnEgIAEioQwg8PGg8_E_cDggQkAYAEKyqLARABGniBCQUJBv4CAPQCDAACBP4BCAMJCfj__wD0Dvf1AwEAAOwJDgP-AAAA_Qv8BQwAAAD7_PT59v4BAAML9v8EAAAAFvgOCf0AAAACFPT4_wEAAP_1BAgE_wAA-wQGB_8AAADuEv8H_wD_AAkB-_kAAAAACAn7AwAAAAAgAC1drtg7OBNACUhOUAIqcxAAGmAaFQBL7wfo3OhS0wnp-s5B7BkZAtXm_-jXAPQfB7cN_OS-FSwAO88dAa4AAAAP79IxEgDLaBnFwjkIMuQb6_EAJX_5-AEN9ibt2wLkGCn9GgkFDhAA1QD5FyvCqlEWDTAgAC2Iiyo7OBNACUhvUAIqrwYQDBqgBgAAfEIAAAzCAACoQgAATMIAAJBBAABAwQAAUEIAAEBAAADIwQAAkEEAANhBAACIwQAAkEEAAARCAADIQQAAuEEAALhBAADwwQAAQEIAAAAAAAAQwgAAAMAAABjCAAAoQgAAkMEAABBBAAAAwgAAbMIAANhBAABAwgAAMMEAAPhBAACWwgAAeMIAAOjBAABUQgAAkEEAAOZCAABEwgAA4EEAABDBAACQQQAAjEIAAAjCAAAYQgAAosIAAPBBAACAwAAAyEEAACBBAABYwgAA6EEAAJ5CAADoQQAA-EEAAMBAAACWwgAAUEEAAMhBAACCQgAAjkIAAKLCAAAcwgAAoMIAAOBAAAAAwgAAisIAAADBAABgQQAA2MEAAERCAABwQgAAXMIAACxCAAAgwgAAuMEAAADCAABwwgAAIEEAAJBBAADAwAAAjEIAABTCAADAQAAAAMIAAHBBAAAgQQAAwEAAANhBAADwwQAAOMIAAFBCAABwwgAAgMAAABhCAABAwgAAQEAAAIBBAAAQQgAAAEAAAITCAAAAQQAA-EEAABDBAAAowgAAQEAAAIDBAAAwQQAAuMEAAAxCAADIQQAAiEEAAAjCAACAvwAALMIAALJCAACAQQAA2MEAACjCAADIwQAAEMIAAHzCAABwwQAAdEIAAKBBAADgwQAADEIAABjCAAAUwgAAuMEAADDCAAAYwgAAEMEAADxCAABYwgAAgkIAABDBAACIwQAAoEAAAHDCAABAQAAA-MEAADDBAACwwQAAgEIAABxCAAAgwgAAEEEAAIBBAADwwQAALMIAAAxCAADAQQAAyEEAABBCAAD4wQAAksIAAIDCAAAAwgAAQEAAAAjCAACYQQAAiMEAAHzCAABQwQAADEIAAODBAACiQgAAEEIAAIhBAABAwAAAAAAAABBBAAC4wQAAGMIAABxCAABcwgAAJMIAACxCAAC4wQAARMIAABDCAABAwAAAiEEAAMxCAAB0wgAAYMIAAJrCAAAQwQAAsEEAAIA_AABgwQAADEIAAIBAAAAkQgAASEIAAIjBAACgQAAAIEEAAAAAIAA4E0AJSHVQASqPAhAAGoACAAC2vgAAMD0AAHw-AACAOwAAQDwAAIo-AACCvgAAL78AAGS-AACAOwAA6D0AAJi9AABAvAAAyD0AADC9AACCvgAA6D0AAMi9AADIPQAA5j4AAH8_AABQPQAAgj4AAOC8AADgvAAAMD0AAIC7AABAPAAA4DwAAFA9AAAsPgAABL4AADS-AAAEPgAAoj4AAMi9AAAQPQAANL4AAJK-AAC2vgAAiL0AALi9AACiPgAAmL0AALi9AAAEvgAAND4AACy-AAAEvgAAdL4AAKa-AAAEvgAABD4AAJ4-AAAcvgAAQLwAACc_AAAQvQAAiL0AAKA8AACAuwAAXD4AAPg9AABUviAAOBNACUh8UAEqjwIQARqAAgAAVL4AADC9AADgvAAAIb8AAFA9AABMvgAA4DwAACS-AAA8vgAAdD4AAJi9AAAkvgAAED0AAIq-AABQvQAAuL0AAFA9AAAdPwAAPD4AAJo-AACYPQAARD4AAIA7AABAPAAAML0AAAy-AABkPgAADD4AAIA7AACgPAAABD4AAAw-AAAMvgAA-D0AAAy-AAAcvgAAsj4AALY-AAC6vgAAML0AABw-AAC4PQAAUL0AAKA8AAAwPQAAFD4AAH-_AACovQAAmL0AAJg9AABwPQAAUL0AADw-AAAQPQAAoLwAAHA9AAAQPQAAkj4AADC9AABwvQAAML0AAPg9AAAsvgAABL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=bYMVAJIeZko","parent-reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["10001200472192442625"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"4135934235563986799":{"videoId":"4135934235563986799","docid":"34-6-11-Z59784B889E4D8624","description":"This video provides an example on how to evaluate a definite integral using substitution. https://mathispower4u.com...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/758770/81eb4bdc6239cd41165512ea3ba57503/564x318_1"},"target":"_self","position":"13","reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","isAdultDoc":false,"relatedParams":{"text":"Definite Integration Using Substitution: Int(e^(-7x), x,0,2)","related_orig_text":"Mathispower4u","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Mathispower4u\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=32G17mlZT2c\",\"src\":\"serp\",\"rvb\":\"EqwDChMxMjQ0NDg4Mjc3NDQxMDYzNzI2ChQxMjg1NjY2MzQwNDQzMTI3ODI2NAoSMjAyNTExNDY5NjY3MTY5MDQwChQxMjI4NTI2MTUwODExNjQ0ODgwMQoTNjg3OTE1ODUwNTI5NDUyNzY5MwoTOTcyNzcwNDg0MDIwNTAxNDE4NgoUMTU4OTk2NTYzOTczNTU0MjgxMzMKEzQxNzQ2ODg2MzczNDU1NDU2NzQKFDEzNzA0NzMzMjQxNTgzMjc3MTI0ChQxNDg0NzE4MDE1NDk2NTE2MjI5MQoUMTAwMDEyMDA0NzIxOTI0NDI2MjUKEzQxMzU5MzQyMzU1NjM5ODY3OTkKEzk0MjAyNTEwNzM3NjUwNDk4NDAKFDE3Nzg5MjMzMTc1MDg4NzQ4OTMxChQxNDIwNjY3OTA3MzI0MTEzOTYwMwoTODIzOTgyNzY1NDc3Nzc3NTQyNQoUMTE0MzY3NDc4Njk3NTc4MTM2MTYKEzI5MjU5Nzc5ODIzMzUzNzA2NDYKEzQ4NTkyMDQyMTExNDcxODQwNDQKEzY1NTk2MjQzMjE5ODA2ODU3NDUaFQoTNDEzNTkzNDIzNTU2Mzk4Njc5OVoTNDEzNTkzNDIzNTU2Mzk4Njc5OWqvDRIBMBgAIkUaMQAKKmhoZWh2ZHRoaHFjZXhrcGJoaFVDTlZNeFJNRXd2bzlBUy1KZmg2ZlFGZxICABIqEMIPDxoPPxOJAoIEJAGABCsqiwEQARp4gQYH-QQD_QD3_Qj9-wT_ARYF-Ab0AQEA4QUD9P77AgD07wr8_gAAAPQPAQoDAAAAAv799fL9AQAG9vQOAgAAABfv9vb9AAAA-hwB_v4BAADt_gD1AgAAAAwD7AEAAAAA9gMM_AIAAAD9Cv8DAAAAAPwB-PsAAAAAIAAtMYLKOzgTQAlITlACKnMQABpg-w4ANBQH1tn9H-IJ4-sLBPcP4efuFP_d9QAJEOfS-CLquvb-_0Pl8gi-AAAABRoHDtQAJ1j998ELAgf59cjpHRR_Ag7f8dgT6sj7K-kp9yMCBOQ3ANsg4QsL7eVUGA82IAAttkhKOzgTQAlIb1ACKq8GEAwaoAYAAIhBAACAPwAAQEIAAJ7CAADYQQAAUEEAAIBCAADQwQAAQEEAAJBBAAAgwQAADMIAAAjCAADQwQAAQEIAAJjBAADgQAAAsMEAAEhCAACewgAALMIAAEjCAACIwQAAsEEAAODAAACwwQAAAMIAAETCAAAAQgAABEIAAHDCAADAQQAAlMIAAMBBAACwwgAAYEEAAOBAAAD6QgAAMMEAAIBCAACQQQAAAAAAAJBBAADAQAAAKEIAAKbCAADwwQAAJEIAADRCAADIQQAAsMEAAATCAAAAQAAAgD8AAJhBAAAMQgAAAMMAAIBBAAAAwAAATEIAADhCAABgwgAA2MEAAKTCAACAQAAAjMIAAHTCAABQwgAAwMEAAFzCAABoQgAAYEIAAHTCAAAEQgAASMIAAETCAAAgwQAAMMIAACBBAACAvwAAOMIAAGhCAAAAwAAAUEIAAHBBAACIQQAAOEIAAJhBAAAYQgAAgMIAAEBAAACOQgAAHMIAACDCAAAAwAAAosIAAAAAAADowQAAeEIAAHBCAACAwgAAuEEAAPBBAACMwgAAZMIAAOBBAADowQAAsEEAAAzCAAAoQgAAkEEAAOBBAAC4wQAACMIAACDBAABMQgAAQMEAAAjCAAD4wQAA0MEAABjCAABgwgAAUMEAALjBAAAAAAAAMEEAAGBBAADowQAAgL8AAIA_AABQwQAACMIAANjBAAAcQgAAiMEAAOhBAACAQQAA2EEAALjBAACMwgAAMEEAAKDAAAA4QgAAkMEAABRCAACoQQAAIMIAAFDBAAD4QQAA6MEAABBBAABIQgAAHEIAAIA_AACQwQAAsMEAAATCAACQwgAAtMIAAEBBAABIwgAAsEEAAODAAAA8wgAA-MEAANhBAACgwAAAvkIAAJJCAADAwAAAgMEAALhBAACQwQAAgL8AAETCAADgwQAAoEAAAEDAAACgQQAA8EEAAJjBAAAIwgAAiMEAAJhBAAB0QgAAAMEAAFDCAAA0wgAAIMEAAOjBAABwwQAAUMIAAIBBAACwwQAAHEIAADxCAAAAwQAAgMEAAAAAAADYwSAAOBNACUh1UAEqjwIQABqAAgAAoDwAANi9AAAEPgAATD4AACy-AABUPgAAQLwAALq-AACAuwAAyD0AAAw-AADYvQAAqD0AAAQ-AABMvgAAqL0AAJ4-AABQPQAAiD0AALI-AAB_PwAA6D0AAGy-AAB0PgAAdL4AAEC8AAC4vQAA4LwAACQ-AAC4PQAAQDwAAES-AACovQAAHD4AALg9AAAwvQAALD4AAAy-AABMvgAA6L0AAFC9AABwvQAAmL0AAKC8AACgvAAAiD0AAKg9AADIvQAAmL0AAJa-AABUPgAALD4AAGw-AABkPgAAVL4AABC9AAAdPwAAgLsAAOA8AACWPgAAqL0AABy-AADgPAAAPL4gADgTQAlIfFABKo8CEAEagAIAADy-AAC4PQAATL4AAB-_AABwvQAAFD4AAJI-AADgPAAAUL0AAHw-AAAwPQAAyL0AAEC8AACYvQAAEL0AAIC7AAAUvgAAGT8AAEy-AAA8PgAA2D0AAHS-AAA0PgAAqL0AAIg9AAAMPgAAmr4AAHA9AABAvAAAyL0AAKC8AACIPQAA-L0AAPi9AABAPAAAPL4AAHw-AAAwPQAAcL0AABS-AACOPgAAuL0AAHA9AACovQAATD4AABC9AAB_vwAAMD0AALg9AAAcPgAAkj4AAKC8AAAEPgAA-D0AALi9AABQPQAAuL0AAPi9AADgPAAAcD0AACw-AABwvQAA-L0AAEC8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=32G17mlZT2c","parent-reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4135934235563986799"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"9420251073765049840":{"videoId":"9420251073765049840","docid":"34-6-4-Z2E6D05B3277F95EF","description":"This video explains how to determine a power series of a function using the known geometric power series. https://mathispower4u.com...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/900731/9639277d36598c80bb423f7245ed5927/564x318_1"},"target":"_self","position":"14","reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","isAdultDoc":false,"relatedParams":{"text":"Determine a Power Series and the Interval of Convergence for a Rational Function","related_orig_text":"Mathispower4u","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Mathispower4u\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=b1IoamolYRM\",\"src\":\"serp\",\"rvb\":\"EqwDChMxMjQ0NDg4Mjc3NDQxMDYzNzI2ChQxMjg1NjY2MzQwNDQzMTI3ODI2NAoSMjAyNTExNDY5NjY3MTY5MDQwChQxMjI4NTI2MTUwODExNjQ0ODgwMQoTNjg3OTE1ODUwNTI5NDUyNzY5MwoTOTcyNzcwNDg0MDIwNTAxNDE4NgoUMTU4OTk2NTYzOTczNTU0MjgxMzMKEzQxNzQ2ODg2MzczNDU1NDU2NzQKFDEzNzA0NzMzMjQxNTgzMjc3MTI0ChQxNDg0NzE4MDE1NDk2NTE2MjI5MQoUMTAwMDEyMDA0NzIxOTI0NDI2MjUKEzQxMzU5MzQyMzU1NjM5ODY3OTkKEzk0MjAyNTEwNzM3NjUwNDk4NDAKFDE3Nzg5MjMzMTc1MDg4NzQ4OTMxChQxNDIwNjY3OTA3MzI0MTEzOTYwMwoTODIzOTgyNzY1NDc3Nzc3NTQyNQoUMTE0MzY3NDc4Njk3NTc4MTM2MTYKEzI5MjU5Nzc5ODIzMzUzNzA2NDYKEzQ4NTkyMDQyMTExNDcxODQwNDQKEzY1NTk2MjQzMjE5ODA2ODU3NDUaFQoTOTQyMDI1MTA3Mzc2NTA0OTg0MFoTOTQyMDI1MTA3Mzc2NTA0OTg0MGqvDRIBMBgAIkUaMQAKKmhoZWh2ZHRoaHFjZXhrcGJoaFVDTlZNeFJNRXd2bzlBUy1KZmg2ZlFGZxICABIqEMIPDxoPPxOPA4IEJAGABCsqiwEQARp4gf4HCAT8BADx-xEFBgT-AQEI_gj4_v4A8_v9_AcBAADtCQIF-wAAAP0C_AUBAAAA9_3-9fr_AAAGA_0BBAAAAAj3DQn-AAAAAhT0-P8BAAD_9QQIBP8AAAwBCgUAAAAA7hL_B_8A_wANCAL8AQAAAAz59wUAAAAAIAAtu0reOzgTQAlITlACKnMQABpgCh0ANP0R8On9HesD6OXnN_QJCgbp8QDv2wALIfbWFvTy3fciAC3nIPrJAAAA_fTgHhEA1EQd19od_Cvr-Pf88x5__BAQ-QcP-OgP5QES_QsL9gv6AO7yDg4m4cMlGAEcIAAtXVJwOzgTQAlIb1ACKq8GEAwaoAYAABRCAADowQAAGEIAAILCAABcQgAAkEEAAFRCAAAgwQAAoMAAAKBBAACAwAAAyMEAAGDBAAAQQQAATEIAAJBBAAAAwAAAIMIAANBBAAAMwgAAEMIAAJDBAACAwgAAOEIAAKDAAAAowgAAoMEAAMDCAADgQQAAAAAAAIC_AAAEQgAAksIAAJDBAAA8wgAAMEIAAIhBAAD-QgAAHMIAAEBCAADIQQAAmEEAANBBAAAowgAAqEIAAP7CAAAMwgAAHEIAAEBCAAAAAAAAIMIAAABCAAAEQgAAoMAAACBBAADAQAAA8MIAANhBAAAAQQAAGEIAAAhCAACEwgAADMIAAKjCAAAAwgAAeMIAAIrCAAA0wgAAgMAAAEDCAABQQgAAikIAAGzCAABAQgAA0MEAADDCAADIwQAAbMIAAIDBAACIQQAADMIAAIpCAABwwQAAYEIAAADBAAAUQgAAoEEAAOBBAADwQQAAkMEAAKDAAABMQgAAYMIAAIA_AABwQQAAJMIAAJDBAACAPwAAcEIAAKBAAACgwgAAyEEAAPhBAAAowgAAAMIAAIjBAAAwwQAAkEEAABjCAAAYQgAAgEEAAOBBAAAAwgAAUMEAAPDBAAAwQgAAAMAAAJDBAABswgAAQMEAACjCAAA4wgAAKMIAADBBAAAsQgAAgEAAAABAAAAswgAAwMAAAIjBAAAMwgAAoMEAALDBAABEQgAAgsIAADxCAAAQQQAAcEEAANDBAAAwwgAAQMEAAKjBAAAcQgAA4MAAACxCAAAIQgAAqMEAANDBAAAYQgAAKMIAAATCAABIQgAABEIAAMhBAAD4QQAALMIAACzCAABkwgAAksIAAEDAAADgwQAAcEEAACBBAACAwgAAMEEAAOhBAACoQQAAnkIAADxCAAAwQQAAIMEAABxCAAAAAAAAgEAAAEDCAACIwQAA4MEAAODBAADgQQAAMMEAALDBAAAUwgAAYMEAAIBBAAC2QgAAQMIAAATCAAB0wgAAoMAAAJhBAAAQwQAAAMIAAHBBAACQwQAAGEIAAKBBAABQwQAAAAAAAADAAABgwSAAOBNACUh1UAEqjwIQABqAAgAAEL0AAFA9AADSPgAAQDwAAKC8AACIPQAADL4AAA-_AADIvQAAuD0AABw-AABEvgAAuD0AAPg9AAAcvgAAyL0AANg9AACIvQAA6D0AAK4-AAB_PwAAHD4AAHA9AAA0PgAA4LwAAJg9AACoPQAA2L0AAKC8AABwPQAAgDsAAHC9AAAUvgAAcD0AAPg9AABQvQAAcD0AAJ6-AACKvgAApr4AAHy-AADovQAAij4AADA9AAA0vgAAPL4AACQ-AACYvQAAJL4AAFS-AAD4vQAAQLwAABw-AACiPgAAdL4AADC9AAATPwAAyL0AAJi9AACgvAAAgLsAACw-AAAEPgAATL4gADgTQAlIfFABKo8CEAEagAIAABC9AAAUvgAAUL0AAC-_AABAvAAA4DwAAKg9AACYvQAAjr4AALY-AADgPAAANL4AADA9AABkvgAAoDwAAKi9AADIPQAANT8AAOg9AACOPgAANL4AAPg9AAAwPQAAgLsAAIA7AABQvQAAFD4AAIA7AACYPQAA4DwAAFA9AABwPQAABL4AAHC9AAC4vQAAqL0AAHA9AACePgAAhr4AAJi9AADoPQAAHD4AAJi9AACgvAAAmL0AANg9AAB_vwAAML0AAMg9AACAuwAAuD0AACS-AAA0PgAAoLwAADA9AACgvAAAmD0AAFw-AADovQAA2L0AAKg9AAAMPgAAuL0AABS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=b1IoamolYRM","parent-reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["9420251073765049840"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"17789233175088748931":{"videoId":"17789233175088748931","docid":"34-0-11-Z004290193D233FF6","description":"This video introduces the chain rule of differentiation. https://mathispower4u.com...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3345488/18fa8b81d869d2bf8cb627eb5ec400e0/564x318_1"},"target":"_self","position":"15","reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","isAdultDoc":false,"relatedParams":{"text":"Introduction to the Chain Rule of Differentiation","related_orig_text":"Mathispower4u","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Mathispower4u\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=6itOp1YoxCQ\",\"src\":\"serp\",\"rvb\":\"EqwDChMxMjQ0NDg4Mjc3NDQxMDYzNzI2ChQxMjg1NjY2MzQwNDQzMTI3ODI2NAoSMjAyNTExNDY5NjY3MTY5MDQwChQxMjI4NTI2MTUwODExNjQ0ODgwMQoTNjg3OTE1ODUwNTI5NDUyNzY5MwoTOTcyNzcwNDg0MDIwNTAxNDE4NgoUMTU4OTk2NTYzOTczNTU0MjgxMzMKEzQxNzQ2ODg2MzczNDU1NDU2NzQKFDEzNzA0NzMzMjQxNTgzMjc3MTI0ChQxNDg0NzE4MDE1NDk2NTE2MjI5MQoUMTAwMDEyMDA0NzIxOTI0NDI2MjUKEzQxMzU5MzQyMzU1NjM5ODY3OTkKEzk0MjAyNTEwNzM3NjUwNDk4NDAKFDE3Nzg5MjMzMTc1MDg4NzQ4OTMxChQxNDIwNjY3OTA3MzI0MTEzOTYwMwoTODIzOTgyNzY1NDc3Nzc3NTQyNQoUMTE0MzY3NDc4Njk3NTc4MTM2MTYKEzI5MjU5Nzc5ODIzMzUzNzA2NDYKEzQ4NTkyMDQyMTExNDcxODQwNDQKEzY1NTk2MjQzMjE5ODA2ODU3NDUaFgoUMTc3ODkyMzMxNzUwODg3NDg5MzFaFDE3Nzg5MjMzMTc1MDg4NzQ4OTMxaq8NEgEwGAAiRRoxAAoqaGhlaHZkdGhocWNleGtwYmhoVUNOVk14Uk1Fd3ZvOUFTLUpmaDZmUUZnEgIAEioQwg8PGg8_E8wDggQkAYAEKyqLARABGniBAgUC_v8CAAQABQcBCPwC-AAFCfr9_QDu8AT8BwAAAOgPAgMI_wAA__0QDAMAAAAHBgMF-f0BABUJ_f8EAAAABPgCBwb_AAAZ_fYE_gEAAPT3BwIDAAAABwIF-P8AAAD8Bvj8-f4AAfoH7f4AAAAAB_gA_gAAAAAgAC0zINc7OBNACUhOUAIqcxAAGmAREAAlKQn_8REd4vnl2fIX5QvrANAKAN3uABAP8PYRC-iw3vP_G-gZCMYAAADwEfr-_AAiRyfZyw_8Eukp6-4UGH8VEgsb_vMZxOcM8BH-CewCIDoA1xYSHhDb-BcaHgYgAC0tH2M7OBNACUhvUAIqrwYQDBqgBgAAwEAAAOhBAABMQgAAFMIAAIpCAADgwAAAVEIAAODBAACAwgAAgL8AACRCAABwQQAARMIAABDCAABMQgAAAEAAAEDAAAAEwgAAsEEAAKTCAAAwwQAAsMEAADzCAABYQgAAIEIAAKBBAACWwgAAbMIAAOJCAABYQgAACEIAAEDAAAAowgAAGEIAAKjCAAAEQgAAQEAAAOhCAAAAwgAAEEIAAADBAABAQQAAJEIAAKDAAAAkQgAAMMIAAMTCAAAgQQAAlkIAAABAAACiwgAAGEIAAPBBAAAYQgAAEMEAAIjBAACgwgAAGEIAAODAAAAAQgAAEMEAAJTCAABAwQAAXMIAAADBAAAkwgAAIEEAAEzCAACMwgAALMIAADxCAACMQgAAMMIAAGBCAACYwQAAssIAAPjBAACYwQAAAEIAAOjBAAAkwgAAoMEAACBBAAAAwgAAwEEAAEBBAABAQAAAXEIAAFhCAACAwgAAsMEAANhBAADIQQAAQMAAABBBAACEwgAAIEEAAETCAAAoQgAAAEEAAGzCAACIQQAAGEIAAJLCAABIwgAAFEIAAEDAAACYQQAAmMEAADxCAABQwQAA0EEAANDBAACMwgAAikIAACxCAACAPwAAqMEAACTCAAA4wgAAAAAAAJjBAABQwgAAyMEAANhBAAD4QQAAIEIAAJTCAAAgQQAASMIAAAzCAAC4wQAAoMAAAEBCAABAQQAAoMEAAMhBAACgQAAAmMEAANLCAACIQQAAAEIAAFhCAABwwQAAgMAAADDBAACAwQAABEIAABDBAABYwgAAiEEAALhBAABQQQAA4MAAAADBAABEwgAA0MEAAEDCAADQwQAAoEEAABDBAACGQgAA-MEAAMhBAADgQQAAgMEAAKBBAAAAQQAABEIAAEDBAAAAQQAA6EEAAGDBAAC4QQAAwMAAADBBAABwQQAA0MEAAGhCAACIQQAA4MAAAPDBAADgwQAAgMEAAJxCAAD4wQAAdMIAAJhBAABwwQAAEEEAAITCAABAQAAAIMEAAIBAAACQQQAAGEIAAOjBAACQQQAAisIAAAjCIAA4E0AJSHVQASqPAhAAGoACAACoPQAAHL4AAJI-AAAwvQAA4LwAAAw-AAAcPgAAur4AAIq-AADgvAAALL4AAFS-AAAEvgAAND4AADA9AAAsvgAABD4AABC9AADgvAAAkj4AAH8_AADoPQAAEL0AAEA8AACSvgAAXL4AABC9AABEPgAA4LwAAHQ-AADYPQAAoLwAABS-AACgvAAAiL0AADC9AAB0PgAAdL4AAHy-AADYPQAA2L0AAJi9AAAEPgAAML0AADQ-AACIvQAAQLwAABS-AAAUvgAAvr4AAOC8AACoPQAATD4AAOA8AACIvQAAgDsAAB8_AACgvAAAML0AABw-AACYvQAAcD0AAMg9AACYPSAAOBNACUh8UAEqjwIQARqAAgAABL4AAHA9AACYvQAAJ78AAOA8AACYvQAABD4AAAy-AAC4PQAAHD4AAEC8AADYvQAAyD0AABC9AACoPQAAML0AAGw-AAADPwAA2L0AAOo-AACAOwAAyD0AAOA8AACIvQAA4DwAABA9AAB0PgAAUD0AAJg9AAB8PgAAUD0AAAQ-AACGvgAAoLwAAGy-AADIPQAA4LwAADQ-AAAEvgAAmL0AAFA9AABAvAAAMD0AACQ-AACIvQAAVD4AAH-_AACgvAAAir4AADw-AAC4vQAA6D0AAFA9AAD4PQAATL4AAAQ-AABAvAAAcD0AAKg9AADovQAAoLwAAMi9AACIPQAAqL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=6itOp1YoxCQ","parent-reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["17789233175088748931"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"14206679073241139603":{"videoId":"14206679073241139603","docid":"34-0-11-Z87FC15C2D92B5E99","description":"This video explains how to find the inverse matrix of a 4 by 4 matrix using the adjoint method given the determinant and the cofactor matrix.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2755728/4dfa8cb06e560597b81376806dd81aed/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/I-OFNAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","isAdultDoc":false,"relatedParams":{"text":"The Inverse of a 4 by 4 Matrix Given the Determinant and Cofactor Matrix","related_orig_text":"Mathispower4u","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Mathispower4u\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=kw42K1eGtqA\",\"src\":\"serp\",\"rvb\":\"EqwDChMxMjQ0NDg4Mjc3NDQxMDYzNzI2ChQxMjg1NjY2MzQwNDQzMTI3ODI2NAoSMjAyNTExNDY5NjY3MTY5MDQwChQxMjI4NTI2MTUwODExNjQ0ODgwMQoTNjg3OTE1ODUwNTI5NDUyNzY5MwoTOTcyNzcwNDg0MDIwNTAxNDE4NgoUMTU4OTk2NTYzOTczNTU0MjgxMzMKEzQxNzQ2ODg2MzczNDU1NDU2NzQKFDEzNzA0NzMzMjQxNTgzMjc3MTI0ChQxNDg0NzE4MDE1NDk2NTE2MjI5MQoUMTAwMDEyMDA0NzIxOTI0NDI2MjUKEzQxMzU5MzQyMzU1NjM5ODY3OTkKEzk0MjAyNTEwNzM3NjUwNDk4NDAKFDE3Nzg5MjMzMTc1MDg4NzQ4OTMxChQxNDIwNjY3OTA3MzI0MTEzOTYwMwoTODIzOTgyNzY1NDc3Nzc3NTQyNQoUMTE0MzY3NDc4Njk3NTc4MTM2MTYKEzI5MjU5Nzc5ODIzMzUzNzA2NDYKEzQ4NTkyMDQyMTExNDcxODQwNDQKEzY1NTk2MjQzMjE5ODA2ODU3NDUaFgoUMTQyMDY2NzkwNzMyNDExMzk2MDNaFDE0MjA2Njc5MDczMjQxMTM5NjAzaogXEgEwGAAiRRoxAAoqaGhlaHZkdGhocWNleGtwYmhoVUNOVk14Uk1Fd3ZvOUFTLUpmaDZmUUZnEgIAEioQwg8PGg8_E8YBggQkAYAEKyqLARABGniB_PAB_P0DAPX-CgwCBv0B_xL4Bvf-_gDuCfEABAAAAO35EPz9_wAA_gYECgQAAAAMCwH_Af0BAPoA9voDAAAAEvkC__cAAAAQEPr5_gEAAP0GDwIDAAAA-wwIAv8AAADzAPoDAwAAAP4DFfsAAAAABAH7BAAAAAAgAC3Fw9w7OBNACUhOUAIqhAIQABrwAX_3D__k7voExgYAANX_9QGd9wwAEhfPALXwDAG94fMAzDv6AOcU6QDUGz4AthsIADnx5P7t6OoAPtr8AAboBQAcE_UBFMMDAEEzAf_U8gX-3gE__t7J-gH04OMCCA3t_v8LHfz5AcT_7AO-Aif7MQEOCS4EJsgNAf7dC_rkyfAF9Onu-_gA8QXg9B78u9goAhX-6gkQIBr5yzXeBB3S8wjZ-BH3LjnT_y7uBQcHLfMEzeDl_PUU8ggKHBIFzCwE9wENMvry3wHuHePu_R3O8QXq-P3-G-fq-_Pi9gbf2Qr2BN34-cYX8fT24PQC9OXw5yAALU78Czs4E0AJSGFQAirPBxAAGsAHTz7Fvn7Y3DwxxrA7qgudvcuBvzvA_pC8qOEbvt8W7DyH20Y81xQIPiIGNT1HwqM8lpNAvqLMqzzo0mQ8xVWFPlQwb72bfyq82UNLvkOSdjspf4K9Efw_vn9geD0QRBK8o4osvH1ft7s5QcA7Cp0XPpObFbwRiq28-n2PPe4I57zMeee7pJiTumo0ubqRd_O8Wt82PenbnbxTkco8aRkZPr1fO71lF-8735LSPMSNAD10SEW77hhovbU2Tb1-9Fk7D_yOPfyMKz3fIPU8WzNoPHzuJL2oZKk7JgWRvfxnkzvYnaw79OH0PFW6oDzQLwQ7u7upPZIkiL1yKFm6d_UKvqCfLj1c-VG85Gb4PWZM4T0YI9Q7sOLUvXU2yT08jlU8q1WQvZEe0DzmqEg8KJ4DPqytWLzx5c87F1z9vJQ8LT1f4e47Y2A9PQ8uyD19-e48TR1aPWPNbbwkin-854FZPTIVKDu7Heu8qjiPvSEjWz2zO6g7z5pkPfZRXL176647y_X2PRqckrw84zG8IZ_GPWLMJ70Kzgc8Yyp9vKNFzL2HKka8PRVGPeprpzx6BkO89gWpPcG80bxvfPG7TLpXvVHngLz5Miy8baSRPF7Ieb0frDU77MmCvd4oKD2hwDc76flsO4fXqj0Oz_27lKmNPbc6Kj3EmZ07bAHnuzBH770_mqC629wIPp7CwLyvTI0629uyPZIlo73gOhm6CyToPasBL73sydM5LEJWvUhj_ryhXQ07xxwava_-qT38qge6NJe1Pbqp3LzmWHi4zaHWPHhSlTw8ypc4CzHNPA8akD1163M5W5Q5PcbPNTz_QRY5rhlPvOw2Q70aTrU5aNlJPIVnV7vKmRo7L3UIPE86NrzRLDW5Ux6SvUobyL3hc5s39F4KPE82yrxCyYK4kfhwPbvv2DzVj084AXRuvfnihr3jiYM4D1ImvGDuzbpCWCc49VXovI-JWT3WMUE4jBgxPRcYiL0zlRw5bkz0PMK1BD3rECY3k1XxPfpYZj0l6JQ4h1ORPfRfxj2quSQ3088IPGYx0b0-S5c2D1Q3PfGC6D3pQYI3ZVPOvcLoqDz-Mug3YUz-u9SYtb0ztII2cdsoPRIF6bzJQ7g4yWS3vd4P7rwaWtw3ndnuPZ-Vk7qjag65Z3UbvIRt3bp4sK83KusQPH-e67waMYU33kiPvLYRjzxu6dG27AO9O3zUD74X-ty4yvRwPSLhKz7xy4o47ZZGOnXopD0KbuO4fE6FvWOES7zCyOi2xEDXvJgGNLyrgL42IAA4E0AJSG1QASpzEAAaYPwFAD3rIrr4FAv788z2_hPw4Os42N8A7fEAIQDs6SYX2uXxGgARzijhuAAAAAjg-QzgANtc0vP0Of40CM2_8AwCfyMSJ8zvLAH08QQz8A0uBwkKHQAIHbgRUSHCHRscLSAALSYiOzs4E0AJSG9QAiqvBhAMGqAGAADoQQAAJEIAAIxCAABswgAA-EEAAGBCAACUQgAA0MEAACzCAACgQQAAiEEAAPjBAAB4wgAAMEEAAMhBAADgQAAAuEEAAPjBAACAQQAAqMEAAFzCAACgwAAAIMIAAKhBAABAwQAAPMIAAIBAAACMwgAAyEEAAMBBAACAPwAA8EEAANTCAADgQAAATMIAAKhBAACAQAAA2EIAAMBAAAAAQgAAwEAAABBBAADAQQAA4MEAADxCAAB8wgAAgMAAAGBCAACEQgAAwEAAAODBAADgQQAAoEAAAERCAABQQQAA8MEAAJrCAAAQQQAAoMAAAIJCAACQQQAApMIAACDBAADgwQAA4EEAAIjCAACYwQAAcMEAAPjBAADwwQAAHEIAALJCAAAUwgAAoEEAAGTCAABMwgAA2MEAAKDBAADwQQAAoEEAAKBAAAD-QgAAcMEAAODAAABMQgAAgEAAAKhBAACAQQAAkkIAABBBAAAowgAAVEIAABDBAACAvwAAoEEAAKzCAACAPwAAQEEAAHxCAADAQAAAEMIAADBBAACwwQAAgL8AAJrCAABwQgAA8MEAADhCAACgwAAAwEEAAJhBAAAgQgAAcMEAAIC_AAAAAAAAMEIAAIDAAADowQAAAMIAAODAAAC0wgAAEMIAACDBAACYQQAAcMEAABDBAAAYQgAANMIAAOhBAADwwQAA2MEAADjCAAD4QQAAPEIAAKDBAACuQgAAmEEAACBCAACYwQAAAEAAADBBAADQwQAAmkIAACjCAAAcQgAAcEIAAFDCAADgQAAAoEEAAKDBAACCwgAAYEEAACzCAAAcwgAAiEEAAPDBAACKwgAAPMIAADTCAABkwgAAcEEAAJhBAAAQwgAAuMEAAMDBAAAwwQAAOMIAAERCAAAAQgAAiMEAANhBAAAwQgAAIMEAANDBAACAwAAAcMEAAEBBAAA0wgAADEIAAIDBAACuwgAAwMEAABDCAACwQQAAKEIAAJLCAADYwQAADMIAACBCAAAAwQAAkEEAAILCAAAUQgAAwMEAABBBAACQQQAAMMEAAExCAAAMQgAATEIgADgTQAlIdVABKo8CEAAagAIAACw-AACAuwAAhj4AADA9AAAQvQAAZD4AAAy-AAAFvwAAcL0AANg9AAA8PgAAED0AAHw-AADIPQAAbL4AAKA8AABEPgAAoDwAAFA9AACCPgAAfz8AANg9AACgvAAAkj4AAPg9AAAMPgAA4DwAACy-AADIPQAAHD4AABA9AAAMvgAAFL4AAEA8AACSPgAAqL0AAEA8AAA8vgAAhr4AAMq-AAAMvgAAEL0AAAy-AABUvgAABL4AAIA7AACSPgAAML0AAOC8AACWvgAAZD4AAEC8AAAQPQAAoDwAADy-AACIvQAAFT8AAEy-AAAUPgAAmj4AAKA8AAD4vQAAcD0AADy-IAA4E0AJSHxQASqPAhABGoACAACgPAAA-D0AADA9AAAXvwAAZL4AAOC8AADoPQAAUD0AALg9AAC6PgAAgLsAAIi9AACoPQAA2L0AAIg9AADovQAAFL4AAEk_AACgPAAA-j4AAGS-AACyvgAAgDsAAPi9AABAvAAAJL4AAIo-AAAUPgAABD4AAFC9AACYvQAAiD0AAOi9AADoPQAABD4AAHC9AAAUPgAAxj4AACy-AADIPQAARD4AABC9AAD4vQAAqL0AAAS-AACAuwAAf78AAOA8AABQvQAAiD0AADy-AACAOwAAmD0AAOg9AAC4PQAAMD0AAIA7AAAsPgAA2L0AAOA8AAC4PQAAED0AAIg9AABAPCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=kw42K1eGtqA","parent-reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":718,"cratio":1.78272,"dups":["14206679073241139603"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"49213643"},"8239827654777775425":{"videoId":"8239827654777775425","docid":"34-1-15-ZE5C2D85903B53682","description":"This video explains how to use substitution and integration by parts to evaluate a definite integral. https://mathispower4u.com...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4044310/28159e92e8d795d957c0d9e0e80a7ea0/564x318_1"},"target":"_self","position":"17","reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","isAdultDoc":false,"relatedParams":{"text":"Substitution and Integration by Parts: Definite Integral of e to Power of Cosine Time Sine","related_orig_text":"Mathispower4u","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Mathispower4u\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=zV5ho8zIvqY\",\"src\":\"serp\",\"rvb\":\"EqwDChMxMjQ0NDg4Mjc3NDQxMDYzNzI2ChQxMjg1NjY2MzQwNDQzMTI3ODI2NAoSMjAyNTExNDY5NjY3MTY5MDQwChQxMjI4NTI2MTUwODExNjQ0ODgwMQoTNjg3OTE1ODUwNTI5NDUyNzY5MwoTOTcyNzcwNDg0MDIwNTAxNDE4NgoUMTU4OTk2NTYzOTczNTU0MjgxMzMKEzQxNzQ2ODg2MzczNDU1NDU2NzQKFDEzNzA0NzMzMjQxNTgzMjc3MTI0ChQxNDg0NzE4MDE1NDk2NTE2MjI5MQoUMTAwMDEyMDA0NzIxOTI0NDI2MjUKEzQxMzU5MzQyMzU1NjM5ODY3OTkKEzk0MjAyNTEwNzM3NjUwNDk4NDAKFDE3Nzg5MjMzMTc1MDg4NzQ4OTMxChQxNDIwNjY3OTA3MzI0MTEzOTYwMwoTODIzOTgyNzY1NDc3Nzc3NTQyNQoUMTE0MzY3NDc4Njk3NTc4MTM2MTYKEzI5MjU5Nzc5ODIzMzUzNzA2NDYKEzQ4NTkyMDQyMTExNDcxODQwNDQKEzY1NTk2MjQzMjE5ODA2ODU3NDUaFQoTODIzOTgyNzY1NDc3Nzc3NTQyNVoTODIzOTgyNzY1NDc3Nzc3NTQyNWqvDRIBMBgAIkUaMQAKKmhoZWh2ZHRoaHFjZXhrcGJoaFVDTlZNeFJNRXd2bzlBUy1KZmg2ZlFGZxICABIqEMIPDxoPPxOhAoIEJAGABCsqiwEQARp4gQoL__f_AQD3_Qj--wT_Ae0D9gD6__8A4wQD9f78AgDq7QoABP8AAPcFAgIAAAAA_v0L_fT-AQANBAH-BAAAAAzx_f_5AAAADhn6Av4BAADu_gD2AgAAAAsE-AUAAAAA9P4EAQEAAAD9BP79AQAAAAYDAQAAAAAAIAAtcf3VOzgTQAlITlACKnMQABpg-wsAMhMM1tL8I9MP3uPvGvge3_jrDf_h9wDvCu_ADRLfuPsG_zDvBwXAAAAAABUGH9MABlIZ5rT7CS7wD8v9KQx_BQPx_9f26NPfEwcp9Bfz7_4kAMgx-wgI7ftPCwslIAAtPihNOzgTQAlIb1ACKq8GEAwaoAYAAOhBAACQwQAACEIAAKLCAAB4QgAAyEEAAHBCAADIwQAAwEAAANBBAADAwAAAcMIAABDCAAC4wQAAwEEAABBBAAAQQQAA4MEAAABCAAB4wgAABMIAAAzCAAD4wQAA0EEAADDBAADgQAAABMIAAIbCAADAQQAAgMAAANjBAAA4QgAALMIAACDBAABkwgAAwEAAAMhBAADYQgAAFMIAAARCAADIQQAAoMAAAKBBAACgwQAAnEIAAJLCAADgwQAAIEIAACBCAADAQAAA8MEAAFBBAAAMQgAAAMAAAIhBAAAgQQAAqMIAANhBAADwQQAAYEIAAERCAACewgAAGMIAAPbCAABwQQAAssIAACTCAABowgAA4MAAAGjCAABcQgAAHEIAAOjCAAAAQQAAUMEAAFjCAAB4wgAA6MEAAIDBAAAgwQAAQMEAAIxCAADwwQAA4EAAABDBAACgQAAAKEIAADRCAACIQQAAQMIAAIC_AACwQgAAusIAAEBBAAAAQAAAaMIAAMDAAACowQAApEIAAHBBAACKwgAA4EAAAPBBAABgwQAADMIAAIhBAAAgwQAAEEEAAADBAACQQgAA0EEAAEBBAADQwQAAgMEAADjCAABIQgAACEIAAABBAAA0wgAAsMEAADDCAACWwgAA4MAAAChCAAAwQQAAQMAAALhBAACYwQAAYMEAAABBAAAowgAAKMIAAAAAAAA8QgAAoMEAADhCAACIQQAAQMAAABDBAABQwgAAUEEAADTCAAAYQgAAmMEAAMhBAADoQQAAWMIAAEBBAADAQQAAsMEAABDBAADwQQAA-EEAAHBBAAAwQgAAwMEAACjCAABkwgAArMIAALhBAABAwgAAwMAAAMDBAACCwgAAgD8AAMBBAACAwAAAukIAAEBCAACgQAAA2EEAAIhBAADgwAAAAEEAACjCAAC4wQAAyMEAAMjBAABEQgAAmMEAABTCAAAgwQAAAAAAAKBAAACGQgAAOMIAAEDCAACIwgAAoEAAAMBAAACAvwAAIMIAAChCAABgQQAAYEEAADBCAABAwQAAIMEAACBBAACYwSAAOBNACUh1UAEqjwIQABqAAgAAHL4AAPi9AAAsPgAAmD0AAIi9AAB8PgAAqD0AACe_AAAwvQAADL4AAOi9AACovQAAiD0AAKI-AAAMvgAAkr4AACw-AACIPQAAEL0AACM_AAB_PwAAQLwAAKC8AACYPQAAkr4AADw-AAAcPgAA-L0AAEQ-AACePgAA6D0AAHC9AACavgAAkj4AAKi9AADgvAAAMD0AALi9AABUvgAAPL4AADC9AABQPQAAQLwAAEC8AABwvQAAoDwAALg9AACavgAAfL4AAIa-AAAQvQAAhj4AAM4-AABMPgAABL4AABC9AABrPwAAcD0AAIi9AACSPgAADL4AAKA8AACgvAAA6r4gADgTQAlIfFABKo8CEAEagAIAACS-AACAuwAA-L0AADe_AADovQAAqD0AAEw-AAD4vQAAyL0AANg9AACGvgAAVL4AAPi9AAD4vQAAUD0AADC9AACAOwAABz8AAOC8AAC6PgAAMD0AABS-AAAQvQAAcD0AAOC8AABwvQAA-L0AAHC9AABwvQAAgLsAAIC7AAAcPgAAoLwAAMi9AADovQAA4LwAAJI-AABwPQAANL4AANi9AAAQvQAAHD4AANg9AABAvAAALD4AAIg9AAB_vwAAcL0AADA9AADYPQAAZD4AALi9AAAUPgAATD4AAGy-AACYPQAAoDwAANg9AADgPAAAJD4AAFQ-AACoPQAAuL0AAEC8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=zV5ho8zIvqY","parent-reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["8239827654777775425"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"11436747869757813616":{"videoId":"11436747869757813616","docid":"34-3-10-ZE6C42D2EE5FB329A","description":"This video explains how find a derivative function that requires the use of the chain rule multiple times. https://mathispower4u.com...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4339855/1a5de559843fc6e576fb231419da9ef6/564x318_1"},"target":"_self","position":"18","reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","isAdultDoc":false,"relatedParams":{"text":"Calculus I Derivative Review: The Chain Rule - A Composition of Four Functions","related_orig_text":"Mathispower4u","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Mathispower4u\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Dpg-AyjKdXw\",\"src\":\"serp\",\"rvb\":\"EqwDChMxMjQ0NDg4Mjc3NDQxMDYzNzI2ChQxMjg1NjY2MzQwNDQzMTI3ODI2NAoSMjAyNTExNDY5NjY3MTY5MDQwChQxMjI4NTI2MTUwODExNjQ0ODgwMQoTNjg3OTE1ODUwNTI5NDUyNzY5MwoTOTcyNzcwNDg0MDIwNTAxNDE4NgoUMTU4OTk2NTYzOTczNTU0MjgxMzMKEzQxNzQ2ODg2MzczNDU1NDU2NzQKFDEzNzA0NzMzMjQxNTgzMjc3MTI0ChQxNDg0NzE4MDE1NDk2NTE2MjI5MQoUMTAwMDEyMDA0NzIxOTI0NDI2MjUKEzQxMzU5MzQyMzU1NjM5ODY3OTkKEzk0MjAyNTEwNzM3NjUwNDk4NDAKFDE3Nzg5MjMzMTc1MDg4NzQ4OTMxChQxNDIwNjY3OTA3MzI0MTEzOTYwMwoTODIzOTgyNzY1NDc3Nzc3NTQyNQoUMTE0MzY3NDc4Njk3NTc4MTM2MTYKEzI5MjU5Nzc5ODIzMzUzNzA2NDYKEzQ4NTkyMDQyMTExNDcxODQwNDQKEzY1NTk2MjQzMjE5ODA2ODU3NDUaFgoUMTE0MzY3NDc4Njk3NTc4MTM2MTZaFDExNDM2NzQ3ODY5NzU3ODEzNjE2aq8NEgEwGAAiRRoxAAoqaGhlaHZkdGhocWNleGtwYmhoVUNOVk14Uk1Fd3ZvOUFTLUpmaDZmUUZnEgIAEioQwg8PGg8_E-gBggQkAYAEKyqLARABGniB9AMC_v8BAPL9Cf4NA_4BEQMG-gf__wDo-vz-BP4BAOwECPIAAAAA_woTBwAAAAAA-_EN-P4AABf3-_n0AAAABf_9AgIAAAAPAPsG_gEAAPIHAg4E_wAACQoNCQAAAAAFB_MBAAAAAPoH7f4AAAAAB_v-CgAAAAAgAC3YMtQ7OBNACUhOUAIqcxAAGmAzDwAySf7_7tIu3RfRyBH02grm484N_x37AOA41gEY_tCj8vT_H-gGAqoAAAAVJc8TBADzbAzUwSEMCgm0IuP_N38SMQnWCQvxqcUK7iTn5hgOLDsAy_kC-v_GwSkKU90gAC03GCY7OBNACUhvUAIqrwYQDBqgBgAAYEEAAIDAAAAIQgAAwMEAAIpCAADgwAAAaEIAABTCAACMwgAA4MAAADhCAAAAQQAAPMIAADjCAADwQQAAQEAAAMDAAABIwgAAgL8AAKTCAACAPwAAQMAAALjBAABgQgAAFEIAAGBBAACQwgAAgMIAAPhCAAAMQgAA8EEAAARCAAA4wgAA8EEAAJDCAADwQQAAiEEAAOhCAABwwQAA2EEAACBBAAC4QQAAiEEAAMjBAABgQgAAOMIAALjCAADgQAAArkIAAHBBAACawgAAIEIAALhBAAAQQQAAAEEAACDCAADMwgAACEIAAOBAAAAwQgAAmEEAAHzCAACgwAAAlsIAALDBAACGwgAAiEEAAGDCAAC4wQAAXMIAAGxCAAC2QgAAQMIAAAhCAADIwQAAqsIAAAzCAABAQAAA4EEAAAzCAAAUwgAAMMEAAMDAAADQwQAA2EEAAMhBAADYwQAAaEIAAGBCAABwwgAAgL8AAKhBAACYQQAAqMEAACBBAABkwgAA6EEAAETCAABgQgAAoMEAAIDCAACEQgAAYEIAACTCAAAIwgAAAEIAACDBAAAQQQAAAMIAADhCAAAwQQAAwEAAAJDBAACSwgAALEIAAExCAABwQQAAQMEAABTCAACgwQAAcMEAAAjCAAA8wgAA-MEAADhCAAAAQQAAEEEAANjBAACgQAAAHMIAAMjBAADQwQAAmMEAAMBBAADIQQAA6MEAAKhBAAAowgAA4EAAAMbCAACIQQAAAMEAAIhCAADgwQAAiEEAAKBAAAAYwgAAAEIAAMBAAACWwgAAsEEAAHBBAADYQQAAMMEAAKDAAACIwQAAEMEAAGjCAAAwwgAA0EEAAMDBAAA0QgAAIMEAACjCAAAMQgAA4MAAACBCAACQQQAAPEIAAIjBAAAgwQAAUMEAAIA_AACwQQAAwMEAAKBAAACIQQAAgD8AAHxCAACwQQAAQMAAAJjCAADowQAAIEEAAEhCAACIwgAA0MEAAMBAAADgwAAAQMAAAGTCAADIwQAAAAAAADDBAACAQQAABEIAAJDBAADgwAAAGMIAACTCIAA4E0AJSHVQASqPAhAAGoACAACAOwAAUD0AAJo-AABQvQAAiD0AABw-AAC4PQAA0r4AAFy-AABAvAAAgLsAAI6-AAAwPQAAfD4AACS-AABQvQAAmL0AALi9AACgPAAAhj4AAH8_AAA0PgAA4LwAAOg9AAAsvgAAcL0AACw-AACoPQAAqD0AAGw-AABQPQAAcL0AADS-AACAuwAABD4AAKq-AABMPgAApr4AAES-AADIPQAAHL4AAIA7AADSPgAAEL0AAEA8AAC4PQAAuD0AADy-AACgPAAAmr4AAAw-AAB0PgAA2D0AANg9AACoPQAAmL0AAO4-AABAvAAABD4AAAw-AACYvQAAJD4AAKg9AAA0viAAOBNACUh8UAEqjwIQARqAAgAA4LwAAKg9AACYvQAANb8AANi9AACAOwAAkj4AAEy-AABQPQAAgDsAAOC8AABEvgAA-D0AAGS-AAA0PgAAoLwAADw-AADuPgAAoDwAANo-AADIvQAAMD0AAOA8AABwvQAA4LwAAIC7AADIPQAAoLwAAIi9AABAPAAAQDwAAGQ-AAC6vgAAJL4AAIq-AADIPQAAMD0AAHw-AACGvgAAfL4AAAy-AABEPgAAEL0AAEw-AAAUPgAAPD4AAH-_AAAsvgAAgDsAAPg9AAAMPgAAUL0AAOi9AAAUPgAAJL4AAAw-AACAOwAAQLwAAOC8AACAuwAAHD4AAIC7AADYPQAAXL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=Dpg-AyjKdXw","parent-reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["11436747869757813616"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"2925977982335370646":{"videoId":"2925977982335370646","docid":"34-11-16-Z0C35E2423E6D7C53","description":"This video explains how to graph a transformation of the sine function. Requires the negative angle identity for sine. http://mathispower4u.com...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1596437/16126d1bf6029566beafae96614f86ae/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/qVyeIwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","isAdultDoc":false,"relatedParams":{"text":"Graph a Sine Transformation in the Form: y=asin(bx+c)+d","related_orig_text":"Mathispower4u","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Mathispower4u\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=QXTB_Wdt-gE\",\"src\":\"serp\",\"rvb\":\"EqwDChMxMjQ0NDg4Mjc3NDQxMDYzNzI2ChQxMjg1NjY2MzQwNDQzMTI3ODI2NAoSMjAyNTExNDY5NjY3MTY5MDQwChQxMjI4NTI2MTUwODExNjQ0ODgwMQoTNjg3OTE1ODUwNTI5NDUyNzY5MwoTOTcyNzcwNDg0MDIwNTAxNDE4NgoUMTU4OTk2NTYzOTczNTU0MjgxMzMKEzQxNzQ2ODg2MzczNDU1NDU2NzQKFDEzNzA0NzMzMjQxNTgzMjc3MTI0ChQxNDg0NzE4MDE1NDk2NTE2MjI5MQoUMTAwMDEyMDA0NzIxOTI0NDI2MjUKEzQxMzU5MzQyMzU1NjM5ODY3OTkKEzk0MjAyNTEwNzM3NjUwNDk4NDAKFDE3Nzg5MjMzMTc1MDg4NzQ4OTMxChQxNDIwNjY3OTA3MzI0MTEzOTYwMwoTODIzOTgyNzY1NDc3Nzc3NTQyNQoUMTE0MzY3NDc4Njk3NTc4MTM2MTYKEzI5MjU5Nzc5ODIzMzUzNzA2NDYKEzQ4NTkyMDQyMTExNDcxODQwNDQKEzY1NTk2MjQzMjE5ODA2ODU3NDUaFQoTMjkyNTk3Nzk4MjMzNTM3MDY0NloTMjkyNTk3Nzk4MjMzNTM3MDY0Nmq2DxIBMBgAIkUaMQAKKmhoZWh2ZHRoaHFjZXhrcGJoaFVDTlZNeFJNRXd2bzlBUy1KZmg2ZlFGZxICABIqEMIPDxoPPxPDA4IEJAGABCsqiwEQARp4gfsPAgb9BAD6BBcG_Af9AgAD__j4_v4A7vwG-gYAAAD99gYDAgAAAPcECfz_AAAAAPQAAwD-AQAUCf3_BAAAABL5Av_3AAAABgv6_f4BAAD4AfwBA_8AAA0UCgEAAAAADQ_89wAAAAD3BwEAAAAAAAz2AAUAAAAAIAAtMsjcOzgTQAlITlACKoQCEAAa8AFqBfz-5u_RAc7n5gCkHOr_gSIK_v0x1QC92QIBrRLN_-3xAwDnKukAAfr8AL4YCAAw2NP_A8sU_yjZDQAt6vgA-P8xARLX8AIjDQwA-Nv__vAdHAADyvoB9d24AAkJ_gQS6ib9CPvcAQUs2QMi_CwB_xoVBQrlFv7ezQwB-PEgA-X22v3zFRAD4OH6_NgRCQX56woFAzD7AeD08P3w9gUHDwP7_Qcr1_4OCBMFBxbwBvXt8wH_-voACRkQBOkC8Afo8Rf57uYR-gb1Avkn8hsAuvz9-iX_D_Xy9QQG4AMFDe7fAPfn8PH74_T9Ddzz9fogAC3_IR07OBNACUhhUAIqcxAAGmAe6AAx7B3LDAoG3-TNyxbV8ge2GrPs_wzE_wEf1AsGAtyrBA__JugK0aIAAAAQ2PoS7ADye9vNAA3xC_PQqONJFn8t_EW7yPnvx8gwDwTxHiX9M1MA8_G6Kzy-yzkFUSYgAC1Wuxg7OBNACUhvUAIqrwYQDBqgBgAAQEIAAHDBAACmQgAARMIAAAxCAAA8QgAAgkIAAADAAAAwwQAA2EEAAGDBAACIwQAAAMIAAMDBAACIQQAACEIAAOBBAACawgAAaEIAAIDBAADwwQAAmMEAAHzCAAAAwAAAqMEAAEDCAACAvwAA4MEAAOBBAABQQQAAtMIAAABBAADEwgAA4MEAAJbCAAAEQgAAiEEAAIBCAABEwgAAqEEAAMhBAADAQAAAoMAAAABAAAAMQgAAPMIAAABAAABEQgAAGEIAAAAAAACIwQAAgL8AAJBBAAAgQQAA6EEAAFhCAADCwgAAkEEAAIBAAACKQgAAwMAAAJzCAADAwQAAUMIAAARCAAC8wgAAkMEAAPDBAAAgwgAAVMIAANBBAABgQgAAksIAAABCAABcwgAAsMEAABzCAABAwAAAgD8AAKjBAACgwAAAjEIAALjBAACAwAAAEMEAAKBBAAC4QQAAYEEAAOhBAAAwwQAAcMEAAIBCAAAMwgAA4EAAAJJCAAD4wQAAEMEAAKDAAACAvwAAuEEAAGDCAADwwQAAkEEAAIC_AABAwgAABEIAAEBAAACYwQAAgMAAAAhCAAAgQgAA4EAAAEDBAABwQQAAfMIAALxCAACQQQAAJMIAAJzCAAAwwgAAWMIAAEjCAACgQAAAAMAAAFDBAABwwQAAeEIAAEDBAADAwAAA0EEAADzCAAAcwgAAuEEAAIpCAACwQQAAukIAAEBBAACgQgAAgMAAADTCAACAwAAAoMAAAHxCAABwwgAAqEEAAIRCAABMwgAA4EEAAIDBAADgQAAAsMEAACBBAAAkQgAAgL8AAPhBAAAAwAAAKMIAADzCAADwwQAAkMIAAEzCAABQQQAAgsIAALDBAADAQQAAuEEAACzCAABIQgAAUEIAAEBBAAAAwAAAwMAAAJhBAAAQwgAAgsIAAADBAAAoQgAANMIAADRCAADAwQAAXMIAACDCAACAwAAAHMIAABxCAAAIwgAAnsIAAKLCAABgQQAA4EEAAARCAAAgwQAAUEEAAEBAAACwQQAAQEIAAPjBAADoQQAAoEEAAJhBIAA4E0AJSHVQASqPAhAAGoACAAAQvQAAuL0AAGQ-AABQPQAADL4AAII-AADgPAAA3r4AAFC9AACIPQAAmL0AAKA8AAA0PgAAfD4AADS-AAD4vQAAyj4AAEA8AADYvQAA_j4AAH8_AAAwvQAAQDwAAMg9AADIvQAA6D0AAAw-AAAUvgAA4LwAACQ-AABAvAAAHL4AAKA8AABwPQAAMD0AAEA8AACiPgAApr4AAGy-AABcvgAAgr4AAEA8AACaPgAAmj4AAJg9AAAwvQAA4DwAAKi9AACSvgAAuL0AALi9AACAuwAAFD4AAMY-AABcvgAAcD0AACE_AACgPAAAMD0AAKg9AAC4vQAAoDwAAAw-AACiviAAOBNACUh8UAEqjwIQARqAAgAAuL0AAHC9AACIvQAANb8AACy-AABAPAAAZD4AAKA8AADovQAAZD4AAHA9AABsvgAAcL0AALi9AACYvQAAcL0AAPg9AAANPwAAQDwAALI-AACgvAAAoDwAADS-AACAuwAAiD0AABC9AADIPQAAoLwAAJg9AABMPgAAMD0AAKg9AABUvgAAgLsAABC9AAAsvgAAbD4AAPg9AACevgAA4LwAADA9AACIPQAAMD0AAKg9AAAwvQAAyD0AAH-_AAAMPgAAmL0AAIA7AAAwPQAA4DwAANg9AACAOwAAgLsAAHA9AADgPAAAVD4AAKg9AACgPAAAJD4AAOC8AACIvQAAQLwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=QXTB_Wdt-gE","parent-reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1238,"cheight":720,"cratio":1.71944,"dups":["8273148347970421467","2925977982335370646"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"3962556806"}},"dups":{"1244488277441063726":{"videoId":"1244488277441063726","title":"\u0007[Mathispower\u0007]\u0007[4\u0007]\u0007[u\u0007] Introduction and Information","cleanTitle":"Mathispower4u Introduction and Information","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=u51daM89wjA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/u51daM89wjA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTlZNeFJNRXd2bzlBUy1KZmg2ZlFGZw==","name":"Mathispower4u","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Mathispower4u","origUrl":"http://gdata.youtube.com/feeds/api/users/bullcleo1","a11yText":"Mathispower4u. Channel verified"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":477,"text":"7:57","a11yText":"Duration 7 minutes 57 seconds","shortText":"7 min"},"views":{"text":"10K","a11yText":"10 thousand views"},"date":"10 Jun 2011","modifyTime":1307664000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/u51daM89wjA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=u51daM89wjA","reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","duration":477},"parentClipId":"1244488277441063726","href":"/preview/1244488277441063726?parent-reqid=1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL&text=Mathispower4u","rawHref":"/video/preview/1244488277441063726?parent-reqid=1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL&text=Mathispower4u","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12856663404431278264":{"videoId":"12856663404431278264","title":"Transformations of the Square Root Function: Matching Functions to Graphs (Basic)","cleanTitle":"Transformations of the Square Root Function: Matching Functions to Graphs (Basic)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=9E7IW7SdNow","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/9E7IW7SdNow?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTlZNeFJNRXd2bzlBUy1KZmg2ZlFGZw==","name":"Mathispower4u","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Mathispower4u","origUrl":"http://www.youtube.com/@Mathispower4u","a11yText":"Mathispower4u. Channel verified"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":300,"text":"5:00","a11yText":"Duration 5 minutes","shortText":"5 min"},"date":"3 Jan 2025","modifyTime":1735862400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/9E7IW7SdNow?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=9E7IW7SdNow","reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","duration":300},"parentClipId":"12856663404431278264","href":"/preview/12856663404431278264?parent-reqid=1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL&text=Mathispower4u","rawHref":"/video/preview/12856663404431278264?parent-reqid=1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL&text=Mathispower4u","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"202511469667169040":{"videoId":"202511469667169040","title":"Determine a Taylor Series for a Rational Function. f(x)=4/x","cleanTitle":"Determine a Taylor Series for a Rational Function. f(x)=4/x","host":{"title":"YouTube","href":"http://www.youtube.com/live/gzp5aMeXg7M","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/gzp5aMeXg7M?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTlZNeFJNRXd2bzlBUy1KZmg2ZlFGZw==","name":"Mathispower4u","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Mathispower4u","origUrl":"http://www.youtube.com/@Mathispower4u","a11yText":"Mathispower4u. Channel verified"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":387,"text":"6:27","a11yText":"Duration 6 minutes 27 seconds","shortText":"6 min"},"date":"28 Feb 2025","modifyTime":1740696937000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/gzp5aMeXg7M?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=gzp5aMeXg7M","reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","duration":387},"parentClipId":"202511469667169040","href":"/preview/202511469667169040?parent-reqid=1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL&text=Mathispower4u","rawHref":"/video/preview/202511469667169040?parent-reqid=1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL&text=Mathispower4u","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12285261508116448801":{"videoId":"12285261508116448801","title":"Parameterize a Circle with Special Conditions","cleanTitle":"Parameterize a Circle with Special Conditions","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=yuSXejBKxgE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/yuSXejBKxgE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTlZNeFJNRXd2bzlBUy1KZmg2ZlFGZw==","name":"Mathispower4u","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Mathispower4u","origUrl":"http://www.youtube.com/@Mathispower4u","a11yText":"Mathispower4u. Channel verified"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":238,"text":"3:58","a11yText":"Duration 3 minutes 58 seconds","shortText":"3 min"},"date":"28 Jan 2025","modifyTime":1738022400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/yuSXejBKxgE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=yuSXejBKxgE","reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","duration":238},"parentClipId":"12285261508116448801","href":"/preview/12285261508116448801?parent-reqid=1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL&text=Mathispower4u","rawHref":"/video/preview/12285261508116448801?parent-reqid=1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL&text=Mathispower4u","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6879158505294527693":{"videoId":"6879158505294527693","title":"Improper Integral with Substitution: e^(-sqrt(x))/sqrt(x)","cleanTitle":"Improper Integral with Substitution: e^(-sqrt(x))/sqrt(x)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=8InXwYc8b9g","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/8InXwYc8b9g?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTlZNeFJNRXd2bzlBUy1KZmg2ZlFGZw==","name":"Mathispower4u","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Mathispower4u","origUrl":"http://www.youtube.com/@Mathispower4u","a11yText":"Mathispower4u. Channel verified"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":329,"text":"5:29","a11yText":"Duration 5 minutes 29 seconds","shortText":"5 min"},"views":{"text":"3,7K","a11yText":"3,7 thousand views"},"date":"22 May 2022","modifyTime":1653223920000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/8InXwYc8b9g?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=8InXwYc8b9g","reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","duration":329},"parentClipId":"6879158505294527693","href":"/preview/6879158505294527693?parent-reqid=1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL&text=Mathispower4u","rawHref":"/video/preview/6879158505294527693?parent-reqid=1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL&text=Mathispower4u","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9727704840205014186":{"videoId":"9727704840205014186","title":"Absolute Extrema on a Close Interval: Cubic Function","cleanTitle":"Absolute Extrema on a Close Interval: Cubic Function","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=u7vCqf6cxGU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/u7vCqf6cxGU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTlZNeFJNRXd2bzlBUy1KZmg2ZlFGZw==","name":"Mathispower4u","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Mathispower4u","origUrl":"http://www.youtube.com/@Mathispower4u","a11yText":"Mathispower4u. Channel verified"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":233,"text":"3:53","a11yText":"Duration 3 minutes 53 seconds","shortText":"3 min"},"views":{"text":"16,1K","a11yText":"16,1 thousand views"},"date":"2 Nov 2020","modifyTime":1604344282000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/u7vCqf6cxGU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=u7vCqf6cxGU","reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","duration":233},"parentClipId":"9727704840205014186","href":"/preview/9727704840205014186?parent-reqid=1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL&text=Mathispower4u","rawHref":"/video/preview/9727704840205014186?parent-reqid=1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL&text=Mathispower4u","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10699644751328417358":{"videoId":"10699644751328417358","title":"New Feature: Mathispower4u Video Database","cleanTitle":"New Feature: Mathispower4u Video Database","host":{"title":"Rutube","href":"http://rutube.ru/video/0ce3fe98cf7246dbecf2d5f772cec88f/","playerUri":"\u003ciframe src=\"//rutube.ru/play/embed/0ce3fe98cf7246dbecf2d5f772cec88f/?wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"rutube","providerName":"rutube.ru","sourceHost":"rutube.ru","name":"rutube.ru","secondPart":{"type":"CHANNEL","isVerified":false,"subscribersCount":0,"a11yText":""},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Frutube.ru?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":137,"text":"2:17","a11yText":"Duration 2 minutes 17 seconds","shortText":"2 min"},"date":"11 Nov 2024","modifyTime":1731304125000,"isExternal":false,"player":{"embedUrl":"https://rutube.ru/play/embed/0ce3fe98cf7246dbecf2d5f772cec88f/?autoStart=true&wmode=opaque","playerId":"rutube","videoUrl":"http://rutube.ru/video/0ce3fe98cf7246dbecf2d5f772cec88f/","reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","duration":137},"parentClipId":"15899656397355428133","href":"/preview/10699644751328417358?parent-reqid=1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL&text=Mathispower4u","rawHref":"/video/preview/10699644751328417358?parent-reqid=1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL&text=Mathispower4u","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15899656397355428133":{"videoId":"15899656397355428133","title":"New Feature: \u0007[Mathispower\u0007]\u0007[4\u0007]\u0007[u\u0007] Video Database","cleanTitle":"New Feature: Mathispower4u Video Database","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=hLHpFf8Vmu0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/hLHpFf8Vmu0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTlZNeFJNRXd2bzlBUy1KZmg2ZlFGZw==","name":"Mathispower4u","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Mathispower4u","origUrl":"http://www.youtube.com/@Mathispower4u","a11yText":"Mathispower4u. Channel verified"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":137,"text":"2:17","a11yText":"Duration 2 minutes 17 seconds","shortText":"2 min"},"views":{"text":"20,1K","a11yText":"20,1 thousand views"},"date":"20 Feb 2013","modifyTime":1361374046000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/hLHpFf8Vmu0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=hLHpFf8Vmu0","reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","duration":137},"parentClipId":"15899656397355428133","href":"/preview/15899656397355428133?parent-reqid=1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL&text=Mathispower4u","rawHref":"/video/preview/15899656397355428133?parent-reqid=1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL&text=Mathispower4u","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4174688637345545674":{"videoId":"4174688637345545674","title":"Use a Contour Map to Estimate Partial Derivative Function Values","cleanTitle":"Use a Contour Map to Estimate Partial Derivative Function Values","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=bwvCTpLuiII","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/bwvCTpLuiII?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTlZNeFJNRXd2bzlBUy1KZmg2ZlFGZw==","name":"Mathispower4u","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Mathispower4u","origUrl":"http://www.youtube.com/@Mathispower4u","a11yText":"Mathispower4u. Channel verified"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":277,"text":"4:37","a11yText":"Duration 4 minutes 37 seconds","shortText":"4 min"},"date":"15 Feb 2025","modifyTime":1739577600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/bwvCTpLuiII?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=bwvCTpLuiII","reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","duration":277},"parentClipId":"4174688637345545674","href":"/preview/4174688637345545674?parent-reqid=1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL&text=Mathispower4u","rawHref":"/video/preview/4174688637345545674?parent-reqid=1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL&text=Mathispower4u","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13704733241583277124":{"videoId":"13704733241583277124","title":"Ex: Estimate the Value of a Partial Derivative Using a Contour Map","cleanTitle":"Ex: Estimate the Value of a Partial Derivative Using a Contour Map","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=rImBsvH5Bzs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/rImBsvH5Bzs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTlZNeFJNRXd2bzlBUy1KZmg2ZlFGZw==","name":"Mathispower4u","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Mathispower4u","origUrl":"http://www.youtube.com/@Mathispower4u","a11yText":"Mathispower4u. Channel verified"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":276,"text":"4:36","a11yText":"Duration 4 minutes 36 seconds","shortText":"4 min"},"views":{"text":"52,2K","a11yText":"52,2 thousand views"},"date":"27 Sep 2017","modifyTime":1506470400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/rImBsvH5Bzs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=rImBsvH5Bzs","reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","duration":276},"parentClipId":"13704733241583277124","href":"/preview/13704733241583277124?parent-reqid=1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL&text=Mathispower4u","rawHref":"/video/preview/13704733241583277124?parent-reqid=1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL&text=Mathispower4u","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14847180154965162291":{"videoId":"14847180154965162291","title":"Determine a Maclauring Series and the Radius of Convergence: f(x)=4(1-x)^(-2)","cleanTitle":"Determine a Maclauring Series and the Radius of Convergence: f(x)=4(1-x)^(-2)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=zXAoIiuzkPA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/zXAoIiuzkPA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTlZNeFJNRXd2bzlBUy1KZmg2ZlFGZw==","name":"Mathispower4u","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Mathispower4u","origUrl":"http://www.youtube.com/@Mathispower4u","a11yText":"Mathispower4u. Channel verified"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":378,"text":"6:18","a11yText":"Duration 6 minutes 18 seconds","shortText":"6 min"},"date":"25 Feb 2025","modifyTime":1740441600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/zXAoIiuzkPA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=zXAoIiuzkPA","reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","duration":378},"parentClipId":"14847180154965162291","href":"/preview/14847180154965162291?parent-reqid=1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL&text=Mathispower4u","rawHref":"/video/preview/14847180154965162291?parent-reqid=1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL&text=Mathispower4u","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10001200472192442625":{"videoId":"10001200472192442625","title":"Determine the Interval of Convergence and Radius of Convergence of a Power Series (Exp)","cleanTitle":"Determine the Interval of Convergence and Radius of Convergence of a Power Series (Exp)","host":{"title":"YouTube","href":"http://www.youtube.com/live/bYMVAJIeZko","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/bYMVAJIeZko?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTlZNeFJNRXd2bzlBUy1KZmg2ZlFGZw==","name":"Mathispower4u","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Mathispower4u","origUrl":"http://www.youtube.com/@Mathispower4u","a11yText":"Mathispower4u. Channel verified"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":503,"text":"8:23","a11yText":"Duration 8 minutes 23 seconds","shortText":"8 min"},"date":"19 Feb 2025","modifyTime":1739923200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/bYMVAJIeZko?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=bYMVAJIeZko","reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","duration":503},"parentClipId":"10001200472192442625","href":"/preview/10001200472192442625?parent-reqid=1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL&text=Mathispower4u","rawHref":"/video/preview/10001200472192442625?parent-reqid=1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL&text=Mathispower4u","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4135934235563986799":{"videoId":"4135934235563986799","title":"Definite Integration Using Substitution: Int(e^(-7x), x,0,2)","cleanTitle":"Definite Integration Using Substitution: Int(e^(-7x), x,0,2)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=32G17mlZT2c","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/32G17mlZT2c?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTlZNeFJNRXd2bzlBUy1KZmg2ZlFGZw==","name":"Mathispower4u","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Mathispower4u","origUrl":"http://www.youtube.com/@Mathispower4u","a11yText":"Mathispower4u. Channel verified"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":265,"text":"4:25","a11yText":"Duration 4 minutes 25 seconds","shortText":"4 min"},"views":{"text":"3,2K","a11yText":"3,2 thousand views"},"date":"17 Jun 2024","modifyTime":1718582400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/32G17mlZT2c?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=32G17mlZT2c","reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","duration":265},"parentClipId":"4135934235563986799","href":"/preview/4135934235563986799?parent-reqid=1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL&text=Mathispower4u","rawHref":"/video/preview/4135934235563986799?parent-reqid=1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL&text=Mathispower4u","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9420251073765049840":{"videoId":"9420251073765049840","title":"Determine a Power Series and the Interval of Convergence for a Rational Function","cleanTitle":"Determine a Power Series and the Interval of Convergence for a Rational Function","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=b1IoamolYRM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/b1IoamolYRM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTlZNeFJNRXd2bzlBUy1KZmg2ZlFGZw==","name":"Mathispower4u","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Mathispower4u","origUrl":"http://www.youtube.com/@Mathispower4u","a11yText":"Mathispower4u. Channel verified"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":399,"text":"6:39","a11yText":"Duration 6 minutes 39 seconds","shortText":"6 min"},"date":"27 Feb 2025","modifyTime":1740614400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/b1IoamolYRM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=b1IoamolYRM","reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","duration":399},"parentClipId":"9420251073765049840","href":"/preview/9420251073765049840?parent-reqid=1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL&text=Mathispower4u","rawHref":"/video/preview/9420251073765049840?parent-reqid=1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL&text=Mathispower4u","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17789233175088748931":{"videoId":"17789233175088748931","title":"Introduction to the Chain Rule of Differentiation","cleanTitle":"Introduction to the Chain Rule of Differentiation","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=6itOp1YoxCQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/6itOp1YoxCQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTlZNeFJNRXd2bzlBUy1KZmg2ZlFGZw==","name":"Mathispower4u","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Mathispower4u","origUrl":"http://www.youtube.com/@Mathispower4u","a11yText":"Mathispower4u. Channel verified"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":460,"text":"7:40","a11yText":"Duration 7 minutes 40 seconds","shortText":"7 min"},"date":"24 Nov 2023","modifyTime":1700784000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/6itOp1YoxCQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=6itOp1YoxCQ","reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","duration":460},"parentClipId":"17789233175088748931","href":"/preview/17789233175088748931?parent-reqid=1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL&text=Mathispower4u","rawHref":"/video/preview/17789233175088748931?parent-reqid=1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL&text=Mathispower4u","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14206679073241139603":{"videoId":"14206679073241139603","title":"The Inverse of a 4 by 4 Matrix Given the Determinant and Cofactor Matrix","cleanTitle":"The Inverse of a 4 by 4 Matrix Given the Determinant and Cofactor Matrix","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=kw42K1eGtqA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/kw42K1eGtqA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTlZNeFJNRXd2bzlBUy1KZmg2ZlFGZw==","name":"Mathispower4u","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Mathispower4u","origUrl":"http://www.youtube.com/@Mathispower4u","a11yText":"Mathispower4u. Channel verified"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":198,"text":"3:18","a11yText":"Duration 3 minutes 18 seconds","shortText":"3 min"},"views":{"text":"30,8K","a11yText":"30,8 thousand views"},"date":"16 Oct 2021","modifyTime":1634332968000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/kw42K1eGtqA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=kw42K1eGtqA","reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","duration":198},"parentClipId":"14206679073241139603","href":"/preview/14206679073241139603?parent-reqid=1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL&text=Mathispower4u","rawHref":"/video/preview/14206679073241139603?parent-reqid=1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL&text=Mathispower4u","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8239827654777775425":{"videoId":"8239827654777775425","title":"Substitution and Integration by Parts: Definite Integral of e to Power of Cosine Time Sine","cleanTitle":"Substitution and Integration by Parts: Definite Integral of e to Power of Cosine Time Sine","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=zV5ho8zIvqY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/zV5ho8zIvqY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTlZNeFJNRXd2bzlBUy1KZmg2ZlFGZw==","name":"Mathispower4u","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Mathispower4u","origUrl":"http://www.youtube.com/@Mathispower4u","a11yText":"Mathispower4u. Channel verified"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":289,"text":"4:49","a11yText":"Duration 4 minutes 49 seconds","shortText":"4 min"},"date":"21 Jan 2025","modifyTime":1737417600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/zV5ho8zIvqY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=zV5ho8zIvqY","reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","duration":289},"parentClipId":"8239827654777775425","href":"/preview/8239827654777775425?parent-reqid=1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL&text=Mathispower4u","rawHref":"/video/preview/8239827654777775425?parent-reqid=1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL&text=Mathispower4u","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11436747869757813616":{"videoId":"11436747869757813616","title":"Calculus I Derivative Review: The Chain Rule - A Composition of Four Functions","cleanTitle":"Calculus I Derivative Review: The Chain Rule - A Composition of Four Functions","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Dpg-AyjKdXw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Dpg-AyjKdXw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTlZNeFJNRXd2bzlBUy1KZmg2ZlFGZw==","name":"Mathispower4u","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Mathispower4u","origUrl":"http://www.youtube.com/@Mathispower4u","a11yText":"Mathispower4u. Channel verified"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":232,"text":"3:52","a11yText":"Duration 3 minutes 52 seconds","shortText":"3 min"},"date":"4 Mar 2024","modifyTime":1709510400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Dpg-AyjKdXw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Dpg-AyjKdXw","reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","duration":232},"parentClipId":"11436747869757813616","href":"/preview/11436747869757813616?parent-reqid=1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL&text=Mathispower4u","rawHref":"/video/preview/11436747869757813616?parent-reqid=1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL&text=Mathispower4u","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8273148347970421467":{"videoId":"8273148347970421467","title":"Graph a Sine Transformation in the Form: y=asin(bx+c)+d","cleanTitle":"Graph a Sine Transformation in the Form: y=asin(bx+c)+d","host":{"title":"Rutube","href":"http://rutube.ru/video/f7b77178ea987f243ec6cc4e4ec09b91/","playerUri":"\u003ciframe src=\"//rutube.ru/play/embed/f7b77178ea987f243ec6cc4e4ec09b91/?wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"rutube","providerName":"rutube.ru","sourceHost":"rutube.ru","name":"rutube.ru","secondPart":{"type":"CHANNEL","isVerified":false,"subscribersCount":0,"a11yText":""},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Frutube.ru?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":451,"text":"7:31","a11yText":"Duration 7 minutes 31 seconds","shortText":"7 min"},"date":"5 Dec 2023","modifyTime":1701797671000,"isExternal":false,"player":{"embedUrl":"https://rutube.ru/play/embed/f7b77178ea987f243ec6cc4e4ec09b91/?autoStart=true&wmode=opaque","playerId":"rutube","videoUrl":"http://rutube.ru/video/f7b77178ea987f243ec6cc4e4ec09b91/","reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","duration":451},"parentClipId":"2925977982335370646","href":"/preview/8273148347970421467?parent-reqid=1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL&text=Mathispower4u","rawHref":"/video/preview/8273148347970421467?parent-reqid=1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL&text=Mathispower4u","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2925977982335370646":{"videoId":"2925977982335370646","title":"Graph a Sine Transformation in the Form: y=asin(bx+c)+d","cleanTitle":"Graph a Sine Transformation in the Form: y=asin(bx+c)+d","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=QXTB_Wdt-gE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/QXTB_Wdt-gE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTlZNeFJNRXd2bzlBUy1KZmg2ZlFGZw==","name":"Mathispower4u","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Mathispower4u","origUrl":"http://www.youtube.com/@Mathispower4u","a11yText":"Mathispower4u. Channel verified"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":451,"text":"7:31","a11yText":"Duration 7 minutes 31 seconds","shortText":"7 min"},"views":{"text":"22,9K","a11yText":"22,9 thousand views"},"date":"1 Nov 2018","modifyTime":1541030400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/QXTB_Wdt-gE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=QXTB_Wdt-gE","reqid":"1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL","duration":451},"parentClipId":"2925977982335370646","href":"/preview/2925977982335370646?parent-reqid=1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL&text=Mathispower4u","rawHref":"/video/preview/2925977982335370646?parent-reqid=1769916333440625-17012766206850711136-balancer-l7leveler-kubr-yp-klg-136-BAL&text=Mathispower4u","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"0127662068507111367136","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Mathispower4u","queryUriEscaped":"Mathispower4u","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}